|
|
一种含富锰偏析带的热轧临界退火中锰钢的组织调控及强化机制 |
陈学双1, 黄兴民1( ), 刘俊杰1, 吕超1, 张娟2 |
1.西南交通大学 材料科学与工程学院 材料先进技术教育部重点实验室 成都 610031 2.西南交通大学 力学与工程学院 应用力学与结构安全重点实验室 成都 610031 |
|
Microstructure Regulation and Strengthening Mechanisms of a Hot-Rolled & Intercritical Annealed Medium-Mn Steel Containing Mn-Segregation Band |
CHEN Xueshuang1, HUANG Xingmin1( ), LIU Junjie1, LV Chao1, ZHANG Juan2 |
1.Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China 2.Applied Mechanics and Structure Safety Key Laboratory, School of Mechanics and Engineering, Southwest Jiaotong University, Chengdu 610031, China |
引用本文:
陈学双, 黄兴民, 刘俊杰, 吕超, 张娟. 一种含富锰偏析带的热轧临界退火中锰钢的组织调控及强化机制[J]. 金属学报, 2023, 59(11): 1448-1456.
Xueshuang CHEN,
Xingmin HUANG,
Junjie LIU,
Chao LV,
Juan ZHANG.
Microstructure Regulation and Strengthening Mechanisms of a Hot-Rolled & Intercritical Annealed Medium-Mn Steel Containing Mn-Segregation Band[J]. Acta Metall Sin, 2023, 59(11): 1448-1456.
1 |
Pan H J, Ding H, Cai M H. Microstructural evolution and precipitation behavior of the warm-rolled medium Mn steels containing Nb or Nb-Mo during intercritical annealing [J]. Mater. Sci. Eng., 2018, A736: 375
|
2 |
Suh D W, Kim S J. Medium Mn transformation-induced plasticity steels: Recent progress and challenges [J]. Scr. Mater., 2017, 126: 63
doi: 10.1016/j.scriptamat.2016.07.013
|
3 |
Seo E J, Cho L, Estrin Y, et al. Microstructure-mechanical properties relationships for quenching and partitioning (Q&P) processed steel [J]. Acta Mater., 2016, 113: 124
doi: 10.1016/j.actamat.2016.04.048
|
4 |
Lee S, Lee S J, De Cooman B C. Austenite stability of ultrafine-grained transformation-induced plasticity steel with Mn partitioning [J]. Scr. Mater., 2011, 65: 225
doi: 10.1016/j.scriptamat.2011.04.010
|
5 |
Xiong X C, Chen B, Huang M X, et al. The effect of morphology on the stability of retained austenite in a quenched and partitioned steel [J]. Scr. Mater., 2013, 68: 321
doi: 10.1016/j.scriptamat.2012.11.003
|
6 |
Tirumalasetty G K, Van Huis M A, Kwakernaak C, et al. Deformation-induced austenite grain rotation and transformation in TRIP-assisted steel [J]. Acta Mater., 2012, 60: 1311
doi: 10.1016/j.actamat.2011.11.026
|
7 |
De Cooman B C, Estrin Y, Kim S K. Twinning-induced plasticity (TWIP) steels [J]. Acta Mater., 2018, 142: 283
doi: 10.1016/j.actamat.2017.06.046
|
8 |
Wang M M, Tasan C C, Ponge D, et al. Smaller is less stable: Size effects on twinning vs. transformation of reverted austenite in TRIP-maraging steels [J]. Acta Mater., 2014, 79: 268
doi: 10.1016/j.actamat.2014.07.020
|
9 |
Zhang B G, Zhang X M, Liu H T. Microstructural evolution and mechanical properties of Ni-containing light-weight medium-Mn TRIP steel processed by intercritical annealing [J]. Mater. Sci. Eng., 2020, A793: 139289
|
10 |
Yen H W, Ooi S W, Eizadjou M, et al. Role of stress-assisted martensite in the design of strong ultrafine-grained duplex steels [J]. Acta Mater., 2015, 82: 100
doi: 10.1016/j.actamat.2014.09.017
|
11 |
Wang M M, Tasan C C, Ponge D, et al. Spectral TRIP enables ductile 1.1 GPa martensite [J]. Acta Mater., 2016, 111: 262
doi: 10.1016/j.actamat.2016.03.070
|
12 |
Morito S, Huang X, Furuhara T, et al. The morphology and crystallography of lath martensite in alloy steels [J]. Acta Mater., 2006, 54: 5323
doi: 10.1016/j.actamat.2006.07.009
|
13 |
Morito S, Tanaka H, Konishi R, et al. The morphology and crystallography of lath martensite in Fe-C alloys [J]. Acta Mater., 2003, 51: 1789
doi: 10.1016/S1359-6454(02)00577-3
|
14 |
Luo H W, Wang X H, Liu Z B, et al. Influence of refined hierarchical martensitic microstructures on yield strength and impact toughness of ultra-high strength stainless steel [J]. J. Mater. Sci. Technol., 2020, 51: 130
doi: 10.1016/j.jmst.2020.04.001
|
15 |
Schemmann L, Zaefferer S, Raabe D, et al. Alloying effects on microstructure formation of dual phase steels [J]. Acta Mater., 2015, 95: 386
doi: 10.1016/j.actamat.2015.05.005
|
16 |
Lee H, Jo M C, Sohn S S, et al. Novel medium-Mn (austenite + martensite) duplex hot-rolled steel achieving 1.6 GPa strength with 20% ductility by Mn-segregation-induced TRIP mechanism [J]. Acta Mater., 2018, 147: 247
doi: 10.1016/j.actamat.2018.01.033
|
17 |
Zhang L, Huang X M, Wang Y H, et al. Achieving excellent strength-ductility and impact toughness combination by cyclic quenching in medium Mn TRIP-aided steel [J]. J. Mater. Eng. Perform., 2018, 27: 356
|
18 |
Lee S J, Kim J, Kane S N, et al. On the origin of dynamic strain aging in twinning-induced plasticity steels [J]. Acta Mater., 2011, 59: 6809
doi: 10.1016/j.actamat.2011.07.040
|
19 |
Li J J, Song R B, Li X, et al. Microstructural evolution and tensile properties of 70 GPa·% grade strong and ductile hot-rolled 6Mn steel treated by intercritical annealing [J]. Mater. Sci. Eng., 2019, A745: 212
|
20 |
Cai Z H, Li H Y, Jing S Y, et al. Influence of annealing temperature on microstructure and tensile property of cold-rolled Fe-0.2C-11Mn-6Al steel [J]. Mater. Charact., 2018, 137: 256
doi: 10.1016/j.matchar.2018.01.043
|
21 |
Li Z C, Ding H, Cai Z H. Mechanical properties and austenite stability in hot-rolled 0.2C-1.6/3.2Al-6Mn-Fe TRIP steel [J]. Mater. Sci. Eng., 2015, A639: 559
|
22 |
Benzing J T, Da Silva A K, Morsdorf L, et al. Multi-scale characterization of austenite reversion and martensite recovery in a cold-rolled medium-Mn steel [J]. Acta Mater., 2019, 166: 512
doi: 10.1016/j.actamat.2019.01.003
|
23 |
Dutta A, Ponge D, Sandlöbes S, et al. Strain partitioning and strain localization in medium manganese steels measured by in situ microscopic digital image correlation [J]. Materialia, 2019, 5: 100252
doi: 10.1016/j.mtla.2019.100252
|
24 |
Lee S, De Cooman B C. Influence of carbide precipitation and dissolution on the microstructure of ultra-fine-grained intercritically annealed medium manganese steel [J]. Metall. Mater. Trans., 2016, 47A: 3263
|
25 |
Gu X L, Xu Y B, Wang X, et al. Austenite formation and mechanical behavior of a novel TRIP-assisted steel with ferrite/martensite initial structure [J]. Mater. Sci. Eng., 2021, A803: 140468
|
26 |
Lubarda V A, Schneider M S, Kalantar D H, et al. Void growth by dislocation emission [J]. Acta Mater., 2004, 52: 1397
doi: 10.1016/j.actamat.2003.11.022
|
27 |
Xiao X Z, Song D K, Xue J M, et al. A size-dependent tensorial plasticity model for FCC single crystal with irradiation [J]. Int. J. Plast., 2015, 65: 152
doi: 10.1016/j.ijplas.2014.09.004
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|