Please wait a minute...
金属学报  2023, Vol. 59 Issue (11): 1448-1456    DOI: 10.11900/0412.1961.2021.00431
  本期目录 | 过刊浏览 |
一种含富锰偏析带的热轧临界退火中锰钢的组织调控及强化机制
陈学双1, 黄兴民1(), 刘俊杰1, 吕超1, 张娟2
1.西南交通大学 材料科学与工程学院 材料先进技术教育部重点实验室 成都 610031
2.西南交通大学 力学与工程学院 应用力学与结构安全重点实验室 成都 610031
Microstructure Regulation and Strengthening Mechanisms of a Hot-Rolled & Intercritical Annealed Medium-Mn Steel Containing Mn-Segregation Band
CHEN Xueshuang1, HUANG Xingmin1(), LIU Junjie1, LV Chao1, ZHANG Juan2
1.Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
2.Applied Mechanics and Structure Safety Key Laboratory, School of Mechanics and Engineering, Southwest Jiaotong University, Chengdu 610031, China
引用本文:

陈学双, 黄兴民, 刘俊杰, 吕超, 张娟. 一种含富锰偏析带的热轧临界退火中锰钢的组织调控及强化机制[J]. 金属学报, 2023, 59(11): 1448-1456.
Xueshuang CHEN, Xingmin HUANG, Junjie LIU, Chao LV, Juan ZHANG. Microstructure Regulation and Strengthening Mechanisms of a Hot-Rolled & Intercritical Annealed Medium-Mn Steel Containing Mn-Segregation Band[J]. Acta Metall Sin, 2023, 59(11): 1448-1456.

全文: PDF(4494 KB)   HTML
摘要: 

对含偏析带的热轧中锰钢进行临界退火处理,通过合理控制非偏析带区的逆奥氏体转变程度,获得了超高强塑积(PSE > 70 GPa·%)。结果表明,经不同温度热处理后,包(由原奥氏体晶粒边界定义)内晶粒的尺寸、取向显著影响中锰钢的力学性能和变形组织。在拉伸过程中,沿着拉伸方向,非偏析带内有利取向的包倾向形成拉长的条状细晶区,而不利取向的包倾向形成碎块状晶区。通过协调变形,相邻包将最终倾向形成上述2种微区亚结构的交替分布。非偏析带内的逆转变奥氏体因晶粒尺寸广泛分布而可承受较大的变形,从而使得偏析带内奥氏体发生足够的应变诱发马氏体相变(SIMT),最终获得优异的强度和韧性匹配。

关键词 偏析带中锰钢临界退火超高强塑积马氏体包SIMT    
Abstract

Recently, medium-Mn steel, used in the automotive industry, has attracted increasing attention as the one of the most promising candidates for the third generation of advanced high strength steels owing to its reasonable cost and excellent mechanical properties. In this study, the effect of intercritical annealing temperature on the microstructure and mechanical properties of a new composition steel was investigated, and its strengthening mechanism and related reasons were analyzed. In addition, a ultra-high product of strength and plasticity (> 70 GPa·%) of hot rolled medium manganese steel with a segregation band was eventually obtained. The results show that the grain size and orientation in the packet (defined by the original austenite grain boundary) significantly affect the mechanical properties and deformation microstructure of the material obtained under different temperatures. The obvious precipitation and dissolution processes of carbides occur at higher temperatures, and thus influence the mechanical stability of reversed austenite. During the tensile process, because it is easier to deform, the favorable packets in the non-segregation zone form an elongated-strip fine-grain zone along the loading direction, while the unfavorable packets form fragmentary grain regions. Moreover, martensite transformation preferentially occurs at the obvious orientation inside the austenite grain and the boundaries where large strain is accumulated. Through coordinated deformation, the adjacent packets eventually tend to form alternate distribution of the two kinds of micro-zone substructures, which is accompanied by the significant evolution of low-angle grain boundaries related to the dislocation activity. Due to the wide distribution of grain size in one packet, the reversed austenite in the non-segregation zone can withstand large deformation, which makes the austenite in the segregation zone undergo sufficient strain-induced martensitic transformation (SIMT), to obtain excellent combination of strength and toughness.

Key wordssegregation band    medium-Mn steel    intercritical annealing    ultra-high product of stren-gth and plasticity    martensite packet    SIMT
收稿日期: 2021-10-14     
ZTFLH:  TG142  
基金资助:四川省科学技术项目(2019YFH0048);四川省科学技术项目(2020YFH0102)
通讯作者: 黄兴民,xmhuang@swjtu.edu.cn,主要从事中锰钢的研究
Corresponding author: HUANG Xingmin, associate professor, Tel: 13980670980, E-mail: xmhuang@swjtu.edu.cn
作者简介: 陈学双,男,1996年生,硕士
图1  热轧淬火态中锰钢的SEM像、EBSD相分布图和反极图(IPF)
图2  热轧淬火态中锰钢的XRD谱
图3  临界退火态中锰钢拉伸前后的XRD谱和奥氏体含量
图4  3种临界退火态中锰钢的SEM像、EBSD相图和相应的IPF
图5  3种临界退火态中锰钢的工程应力-应变曲线和相应的加工硬化曲线
图6  IA650样品在不同应变下的相分布图和相应的IPF
图7  IA650样品非偏析区在拉伸后的SEM像
图8  IA600和IA700样品拉断后的相分布图和IPF
图9  IA650中样品中偏析带在拉伸前后的SEM像
图10  计算的3种临界退火态中锰钢中偏析带在拉伸后的马氏体转变率
1 Pan H J, Ding H, Cai M H. Microstructural evolution and precipitation behavior of the warm-rolled medium Mn steels containing Nb or Nb-Mo during intercritical annealing [J]. Mater. Sci. Eng., 2018, A736: 375
2 Suh D W, Kim S J. Medium Mn transformation-induced plasticity steels: Recent progress and challenges [J]. Scr. Mater., 2017, 126: 63
doi: 10.1016/j.scriptamat.2016.07.013
3 Seo E J, Cho L, Estrin Y, et al. Microstructure-mechanical properties relationships for quenching and partitioning (Q&P) processed steel [J]. Acta Mater., 2016, 113: 124
doi: 10.1016/j.actamat.2016.04.048
4 Lee S, Lee S J, De Cooman B C. Austenite stability of ultrafine-grained transformation-induced plasticity steel with Mn partitioning [J]. Scr. Mater., 2011, 65: 225
doi: 10.1016/j.scriptamat.2011.04.010
5 Xiong X C, Chen B, Huang M X, et al. The effect of morphology on the stability of retained austenite in a quenched and partitioned steel [J]. Scr. Mater., 2013, 68: 321
doi: 10.1016/j.scriptamat.2012.11.003
6 Tirumalasetty G K, Van Huis M A, Kwakernaak C, et al. Deformation-induced austenite grain rotation and transformation in TRIP-assisted steel [J]. Acta Mater., 2012, 60: 1311
doi: 10.1016/j.actamat.2011.11.026
7 De Cooman B C, Estrin Y, Kim S K. Twinning-induced plasticity (TWIP) steels [J]. Acta Mater., 2018, 142: 283
doi: 10.1016/j.actamat.2017.06.046
8 Wang M M, Tasan C C, Ponge D, et al. Smaller is less stable: Size effects on twinning vs. transformation of reverted austenite in TRIP-maraging steels [J]. Acta Mater., 2014, 79: 268
doi: 10.1016/j.actamat.2014.07.020
9 Zhang B G, Zhang X M, Liu H T. Microstructural evolution and mechanical properties of Ni-containing light-weight medium-Mn TRIP steel processed by intercritical annealing [J]. Mater. Sci. Eng., 2020, A793: 139289
10 Yen H W, Ooi S W, Eizadjou M, et al. Role of stress-assisted martensite in the design of strong ultrafine-grained duplex steels [J]. Acta Mater., 2015, 82: 100
doi: 10.1016/j.actamat.2014.09.017
11 Wang M M, Tasan C C, Ponge D, et al. Spectral TRIP enables ductile 1.1 GPa martensite [J]. Acta Mater., 2016, 111: 262
doi: 10.1016/j.actamat.2016.03.070
12 Morito S, Huang X, Furuhara T, et al. The morphology and crystallography of lath martensite in alloy steels [J]. Acta Mater., 2006, 54: 5323
doi: 10.1016/j.actamat.2006.07.009
13 Morito S, Tanaka H, Konishi R, et al. The morphology and crystallography of lath martensite in Fe-C alloys [J]. Acta Mater., 2003, 51: 1789
doi: 10.1016/S1359-6454(02)00577-3
14 Luo H W, Wang X H, Liu Z B, et al. Influence of refined hierarchical martensitic microstructures on yield strength and impact toughness of ultra-high strength stainless steel [J]. J. Mater. Sci. Technol., 2020, 51: 130
doi: 10.1016/j.jmst.2020.04.001
15 Schemmann L, Zaefferer S, Raabe D, et al. Alloying effects on microstructure formation of dual phase steels [J]. Acta Mater., 2015, 95: 386
doi: 10.1016/j.actamat.2015.05.005
16 Lee H, Jo M C, Sohn S S, et al. Novel medium-Mn (austenite + martensite) duplex hot-rolled steel achieving 1.6 GPa strength with 20% ductility by Mn-segregation-induced TRIP mechanism [J]. Acta Mater., 2018, 147: 247
doi: 10.1016/j.actamat.2018.01.033
17 Zhang L, Huang X M, Wang Y H, et al. Achieving excellent strength-ductility and impact toughness combination by cyclic quenching in medium Mn TRIP-aided steel [J]. J. Mater. Eng. Perform., 2018, 27: 356
18 Lee S J, Kim J, Kane S N, et al. On the origin of dynamic strain aging in twinning-induced plasticity steels [J]. Acta Mater., 2011, 59: 6809
doi: 10.1016/j.actamat.2011.07.040
19 Li J J, Song R B, Li X, et al. Microstructural evolution and tensile properties of 70 GPa·% grade strong and ductile hot-rolled 6Mn steel treated by intercritical annealing [J]. Mater. Sci. Eng., 2019, A745: 212
20 Cai Z H, Li H Y, Jing S Y, et al. Influence of annealing temperature on microstructure and tensile property of cold-rolled Fe-0.2C-11Mn-6Al steel [J]. Mater. Charact., 2018, 137: 256
doi: 10.1016/j.matchar.2018.01.043
21 Li Z C, Ding H, Cai Z H. Mechanical properties and austenite stability in hot-rolled 0.2C-1.6/3.2Al-6Mn-Fe TRIP steel [J]. Mater. Sci. Eng., 2015, A639: 559
22 Benzing J T, Da Silva A K, Morsdorf L, et al. Multi-scale characterization of austenite reversion and martensite recovery in a cold-rolled medium-Mn steel [J]. Acta Mater., 2019, 166: 512
doi: 10.1016/j.actamat.2019.01.003
23 Dutta A, Ponge D, Sandlöbes S, et al. Strain partitioning and strain localization in medium manganese steels measured by in situ microscopic digital image correlation [J]. Materialia, 2019, 5: 100252
doi: 10.1016/j.mtla.2019.100252
24 Lee S, De Cooman B C. Influence of carbide precipitation and dissolution on the microstructure of ultra-fine-grained intercritically annealed medium manganese steel [J]. Metall. Mater. Trans., 2016, 47A: 3263
25 Gu X L, Xu Y B, Wang X, et al. Austenite formation and mechanical behavior of a novel TRIP-assisted steel with ferrite/martensite initial structure [J]. Mater. Sci. Eng., 2021, A803: 140468
26 Lubarda V A, Schneider M S, Kalantar D H, et al. Void growth by dislocation emission [J]. Acta Mater., 2004, 52: 1397
doi: 10.1016/j.actamat.2003.11.022
27 Xiao X Z, Song D K, Xue J M, et al. A size-dependent tensorial plasticity model for FCC single crystal with irradiation [J]. Int. J. Plast., 2015, 65: 152
doi: 10.1016/j.ijplas.2014.09.004
[1] 孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
[2] 沈国慧, 胡斌, 杨占兵, 罗海文. 回火温度对含 δ 铁素体高铝中锰钢力学性能和显微组织的影响[J]. 金属学报, 2022, 58(2): 165-174.
[3] 王存宇,常颖,周峰峦,曹文全,董瀚,翁宇庆. 高强度高塑性第三代汽车钢的M3组织调控理论与技术[J]. 金属学报, 2020, 56(4): 400-410.
[4] 邵成伟, 惠卫军, 张永健, 赵晓丽, 翁宇庆. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能[J]. 金属学报, 2019, 55(2): 191-201.
[5] 赵晓丽, 张永健, 邵成伟, 惠卫军, 董瀚. 两相区退火处理冷轧0.1C-5Mn中锰钢的氢脆敏感性[J]. 金属学报, 2018, 54(7): 1031-1041.
[6] 阳锋, 罗海文, 董瀚. 退火温度对冷轧7Mn钢拉伸行为的影响及模拟研究[J]. 金属学报, 2018, 54(6): 859-867.
[7] 黄龙,邓想涛,刘佳,王昭东. 0.12C-3.0Mn低碳中锰钢中残余奥氏体稳定性与低温韧性的关系[J]. 金属学报, 2017, 53(3): 316-324.
[8] 姜启川;阎久林;关庆丰;王守实;荣福杰;李章. 变质铸态中锰钢中SiO_2作为共生共晶体非自发核心的研究[J]. 金属学报, 1992, 28(10): 79-84.
[9] 刘耀辉;于思荣;何镇明;李庆春. Ce对Al_2O_3/中锰钢界面润湿性的影响及其机理[J]. 金属学报, 1991, 27(1): 126-129.