Please wait a minute...
金属学报  2016, Vol. 52 Issue (2): 202-208    DOI: 10.11900/0412.1961.2015.00308
  论文 本期目录 | 过刊浏览 |
退火工艺对硅通孔填充Cu微结构演化与胀出行为的影响*
陈思,秦飞,安彤(),王瑞铭,赵静毅
北京工业大学机械工程与应用电子技术学院, 北京 100124
EFFECTS OF ANNEALING PROCESS ON MICRO-STRUCTURE EVOLUTION AND PROTRUSION OFCOPPER FILLED IN THROUGH-SILICON VIAS
Si CHEN,Fei QIN,Tong AN(),Ruiming WANG,Jingyi ZHAO
College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing 100124, China
引用本文:

陈思,秦飞,安彤,王瑞铭,赵静毅. 退火工艺对硅通孔填充Cu微结构演化与胀出行为的影响*[J]. 金属学报, 2016, 52(2): 202-208.
Si CHEN, Fei QIN, Tong AN, Ruiming WANG, Jingyi ZHAO. EFFECTS OF ANNEALING PROCESS ON MICRO-STRUCTURE EVOLUTION AND PROTRUSION OFCOPPER FILLED IN THROUGH-SILICON VIAS[J]. Acta Metall Sin, 2016, 52(2): 202-208.

全文: PDF(5128 KB)   HTML
  
摘要: 

采用不同电流密度和外加剂浓度将Cu电镀填充到硅通孔(TSV)制作晶圆试样, 将试样置于Ar气环境内进行退火处理. 观测了硅通孔填充Cu (TSV-Cu)的胀出量和界面完整性, 分析了电镀参数对填充Cu微结构(晶粒尺寸)以及微结构对填充Cu退火胀出量的影响. 结果表明, 电流密度和外加剂浓度影响TSV-Cu的晶粒尺寸. 电流密度越高, 晶粒尺寸越小; 外加剂浓度越高, 晶粒尺寸越小, 但其影响程度不如电流密度显著. 退火后, Cu的晶粒尺寸变大, TSV-Cu发生胀出, 胀出量与Cu晶粒尺寸具有正相关的关系. 随着TSV-Cu的胀出, Cu-Si界面发生开裂, 裂纹沿界面层中的Cu种子层内部延伸.

关键词 硅通孔电镀Cu退火微结构胀出量    
Abstract

3D-IC integration realized by using through-silicon via (TSV) technology is the main trend in packaging industry. TSVs are usually fully filled by electroplated Cu, namely TSV-Cu, which can make products possess higher electrical performance, higher density and lighter weight. In a typical TSV forming process, the TSV-Cu is annealed to stabilize its microstructure. However, during annealing process, the Cu protrudes out of the TSV due to the large change in temperature and the mismatch of coefficient of thermal expansion between the Cu (16.7×10-6-1) and its surrounding Si (2.3×10-6-1) matrix. This protrusion is a potential threat to the TSV structural integrity, since it might lead to cracking or delamination. In this research, the effects of annealing process on microstructure evolution and protrusion of TSV-Cu are investigated. Four level sets of current density and additive concentration were used to fill Cu into the TSV by electroplating process to prepare test specimens. The TSV diameter was 30 μm, and depth was 100 μm. The pitch of two TSVs was 200 μm. The annealing process was conducted in a vacuum annealing furnace, the specimens were heated from 25 ℃ to 425 ℃, and then maintained for 30 min at 425 ℃. The microstructures of TSV-Cu before and after annealing were characterized by EBSD. The protrusion of specimens after annealing was measured by White Light Interferometer (WLI). The results show that, during the electroplating process, both current density and additive concentration have impact on the TSV-Cu grain size, higher current density and higher additive concentration help to gain a finer grained Cu, and the influence of the additive concentration is less significant than the current density. After being annealed, for all the specimens, the Cu grain size increases, the TSV-Cu protrudes with a crack along the Cu-Si interface within the Cu seed layer, and there is a positive correlation between the protrusion and the grain size of the TSV-Cu.

Key wordsthrough-silicon via    electroplated Cu    annealing    microstructure    protrusion
收稿日期: 2015-06-15     
基金资助:* 国家自然科学基金资助项目11272018
图1  硅通孔填充铜(TSV-Cu)胀出量的测量
图2  退火前后TSV-Cu试样表面形貌的SEM像
图3  Cu-Si界面结构示意图和升温速率为10 ℃/min的退火前后Cu-Si界面的SEM像
图4  以1.2 ℃/min的升温速率退火后Cu-Si界面的SEM像
图5  4种试样上TSV-Cu退火胀出量
图6  不同电镀参数TSV-Cu退火前后的EBSD图
Specimen Treatment Average grain size / μm Small Middle Large
LL Before annealing 0.696 85.9% 10.2% 3.9%
After annealing 1.058 66.4% 23.5% 10.1%
LH Before annealing 0.608 87.1% 10.5% 2.4%
After annealing 0.984 71.6% 20.0% 8.5%
HL Before annealing 0.438 94.9% 4.3% 0.8%
After annealing 0.970 74.7% 16.0% 9.3%
HH Before annealing 0.374 96.5% 3.3% 0.2%
After annealing 0.766 84.4% 10.7% 4.9%
表1  4种试样上TSV-Cu退火前后的平均晶粒尺寸以及晶粒尺寸分布
图7  4种试样上TSV-Cu退火胀出量及其晶粒尺寸
[1] Lau J H.Microelectron Int, 2011; 28: 8
[2] Ko C T, Chen K N.Microelectron Reliab, 2013; 53: 7
[3] Qin F, Xiang M, Wu W.Acta Metall Sin, 2014; 50: 722
[3] (秦飞, 项敏, 武伟. 金属学报, 2014; 50: 722)
[4] Okoro C, Levine L E, Xu R, Hummler K, Obeng Y S.IEEE Trans Electron Devices, 2014; 61: 2473
[5] Putra W N, Trigg A D, Li H Y, Gan C L.In: Lim Y K ed., 2014 IEEE 21st Int Symp on the Physical and Failure Analysis of Integrated Circuits, New York: Institute of Electrical and Electronics Engineers Inc, 2014: 295
[6] Zhang Y Z, Ding G F, Cheng P, Wang H.ECS Electrochem Lett, 2014; 3: D23
[7] Wu Z Y, Huang Z H, Ma Y C, Xiong H, Conway P P.Electron Mater Lett, 2014; 10: 281
[8] Wang H Y, Cheng P, Wang S, Wang H, Gu T, Li J Y, Gu X, Ding G F.Microelectron Eng, 2014; 114: 85
[9] De W I, Croes K, Varela P O, Labie R, Redolfi A, Van D P M, Vanstreels K, Okoro C, Vandevelde B, Beyne E.Microelectron Reliab, 2011; 51: 1856
[10] Heryanto A, Putra W N, Trigg A, Gao S, Kwon W S, Che F X, Ang X F, Wei J, Made R I, Gan C L, Pey K L.J Electron Mater, 2012; 41: 2533
[11] Malta D, Gregory C, Lueck M, Temple D, Krause M, Altmann F, Petzold M, Weatherspoon M, Miller J.In: Dias R, Sauter W eds., 2011 IEEE 61st Electronic Components and Technology Conference, New York: Institute of Electrical and Electronics Engineers Inc, 2011: 1815
[12] He H W, Song C S, Xu C, Wang L, Zhang W Q.In: Lim Y K ed., 2013 14th Int Conf on Electronic Packaging Technology, New York: IEEE Computer Society, 2013: 769
[13] Che F X, Putra W N, Heryanto A, Trigg A, Gao S, Gan C L.In: Koyanagi M, Kada M eds., 2011 IEEE Int 3D Systems Integration Conference, New York: IEEE Computer Society, 2011: 6262985
[14] Saettler P, Hecker M, Boettcher M, Rudolph C, Wolter K J.In: Gilles P, Jean M Y, Karlheinz B eds., Proc 5th Electronics System-integration Technology Conference, Piscataway: Institute of Electrical and Electronics Engineers Inc, 2014: 6962712
[15] Saettler P, Boettcher M, Wolter K J.In: McCann D, Pekin S eds., 2012 IEEE 62nd Electronic Components and Technology Conference, New York: Institute of Electrical and Electronics Engineers Inc, 2012: 619
[16] Okoro C, Labie R, Vanstreels K, Franquet A, Gonzalez M, Vandevelde B, Beyne E, Vandepitte D, Verlinden B.J Mater Sci, 2011; 46: 3868
[17] Shin H A S, Kim B J, Kim J H, Hwang S H, Budiman A S, Som H Y, Byun K Y, Tamura N, Kunz M, Kim D I, Joo Y C.J Electron Mater, 2012; 41: 712
[18] Pérez-Prado M T, Vlassak J J.Scr Mater, 2002; 47: 817
[19] Kumar P, Dutta I, Bakir M S.J Electron Mater, 2012; 41: 322
[20] Dutta I, Kumar P, Bakir M S.JOM, 2011; 63: 70
[21] Wu W, Qin F, Li W, Shi G.In: Bi K Y, Tian Z, Xu Z Q eds., 2014 15th Int Conf on Electronic Packaging Technology, Piscataway: Institute of Electrical and Electronics Engineers Inc, 2014: 688
[22] Che F X, Putra W N, Heryanto A, Trigg A, Zhang X W, Gan C L.IEEE Trans Compon Packag Manufact Technol, 2013; 3: 732
[23] Lee H, Wong S S, Lopatin S D.J Appl Phys, 2003; 93: 3796
[24] Lui G T, Chen D, Kuo J C.J Phys, 2009; 42D: 215410
[25] Okoro C, Vanstreels K, Labie R, Lühn O, Vandevelde B, Verlinden B, Vandepitte D.J Micromech Microeng, 2010; 20: 045032
[26] Yan W Z, Zhang J Z, Zhou Z G, Yue Z F.Acta Metall Sin, 2015; 51: 100
[26] (闫五柱, 张嘉振, 周振功, 岳珠峰. 金属学报, 2015; 51: 100)
[27] Hansen N.Scr Mater, 2004; 51: 801
[1] 陈学双, 黄兴民, 刘俊杰, 吕超, 张娟. 一种含富锰偏析带的热轧临界退火中锰钢的组织调控及强化机制[J]. 金属学报, 2023, 59(11): 1448-1456.
[2] 于少霞, 王麒, 邓想涛, 王昭东. GH3600镍基高温合金极薄带的制备及尺寸效应[J]. 金属学报, 2023, 59(10): 1365-1375.
[3] 金鑫焱, 储双杰, 彭俊, 胡广魁. 露点对连续退火0.2%C-1.5%Si-2.5%Mn高强钢选择性氧化及脱碳的影响[J]. 金属学报, 2023, 59(10): 1324-1334.
[4] 刘志愿, 王永贵, 赵成玉, 杨婷, 夏爱林. p型方钴矿热电材料纳米-介观尺度微结构调控[J]. 金属学报, 2022, 58(8): 979-991.
[5] 张海天, 张湘义. 有序异构功能材料[J]. 金属学报, 2022, 58(11): 1459-1466.
[6] 杨平, 王金华, 马丹丹, 庞树芳, 崔凤娥. 成分对真空脱锰法相变控制高硅电工钢{100}织构的影响[J]. 金属学报, 2022, 58(10): 1261-1270.
[7] 李索, 陈维奇, 胡龙, 邓德安. 加工硬化和退火软化效应对316不锈钢厚壁管-管对接接头残余应力计算精度的影响[J]. 金属学报, 2021, 57(12): 1653-1666.
[8] 王玉, 胡斌, 刘星毅, 张浩, 张灏云, 官志强, 罗海文. 退火温度对含Nb高锰钢力学和阻尼性能的影响[J]. 金属学报, 2021, 57(12): 1588-1594.
[9] 杨锐, 马英杰, 雷家峰, 胡青苗, 黄森森. 高强韧钛合金组成相成分和形态的精细调控[J]. 金属学报, 2021, 57(11): 1455-1470.
[10] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[11] 姚小飞, 魏敬鹏, 吕煜坤, 李田野. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56(5): 769-775.
[12] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[13] 张煜, 娄丽艳, 徐庆龙, 李岩, 李长久, 李成新. 超高速激光熔覆镍基WC涂层的显微结构与耐磨性能[J]. 金属学报, 2020, 56(11): 1530-1540.
[14] 林晓冬,彭群家,韩恩厚,柯伟. 退火对热老化308L不锈钢焊材显微结构的影响[J]. 金属学报, 2019, 55(5): 555-565.
[15] 李文涛,王振玉,张栋,潘建国,柯培玲,汪爱英. 电弧复合磁控溅射结合热退火制备Ti2AlC涂层[J]. 金属学报, 2019, 55(5): 647-656.