Please wait a minute...
金属学报  2013, Vol. 49 Issue (8): 953-958    DOI: 10.3724/SP.J.1037.2013.00165
  论文 本期目录 | 过刊浏览 |
液态Al氧化的环境透射电镜观察
蔡俊1),凌国平1),陈长安2),张桂凯2)
1)浙江大学材料科学与工程学系, 杭州 310027
2)中国工程物理研究院表面物理与化学国家重点实验室, 绵阳 621907
OBSERVATION ON THE OXIDATION OF LIQUID Al BY ENVIRONMENTAL TRANSMISSION ELECTRON MICROSCOPE
CAI Jun1), LING Guoping1),CHEN Changan2), ZHANG Guikai2)
1)Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027
2)State Key Laboratory of Surface Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621907
引用本文:

蔡俊,凌国平,陈长安,张桂凯. 液态Al氧化的环境透射电镜观察[J]. 金属学报, 2013, 49(8): 953-958.
CAI Jun, LING Guoping, CHEN Changan, ZHANG Guikai. OBSERVATION ON THE OXIDATION OF LIQUID Al BY ENVIRONMENTAL TRANSMISSION ELECTRON MICROSCOPE[J]. Acta Metall Sin, 2013, 49(8): 953-958.

全文: PDF(3439 KB)  
摘要: 

为研究液态Al初期氧化产物的相组成及其氧化机理,采用环境透射电镜(E-TEM)对纳米Al粉末在720℃时的氧化进行了原位观察.差热分析(DTA)和TEM形貌观察结果表明, 纳米Al粉末表面存在5—6 nm厚的非晶Al2O3膜,该非晶膜在350—550℃间转变为γ-Al2O3.纳米Al粉末在10-4 Pa高真空下熔化后冷却, 可以得到无氧化膜的固态Al.再次熔化后的Al在720℃, 10-2 Pa氧分压下氧化, 直接形成棒状的纳米α-Al2O3.同时, XRD检测结果表明, 熔融的块状金属Al在720℃, 10-2 Pa氧分压下氧化,也得到α-Al2O3. 液态Al的这种特殊氧化结果与其液态结构以及液态Al蒸发成气体再氧化有关.

关键词 液态Al氧化α-Al2O3环境透射电子显微镜    
Abstract

The study of liquid metal oxidation is of particular importance since some liquid metals are highly reactive with oxygen even under ultrahigh vacuum. The investigation of the oxidation behavior of liquid aluminum is strongly demanded due to its wide applications but relatively low melting point. However, it is still ambiguous about the products at the initial oxidation stage of liquid aluminum through the researches done in the past several decades. In order to investigate the initial oxidation products together with the oxidation mechanism of liquid aluminum, in-situ oxidation of nano aluminum powder was carried out at 720℃ in the environmental TEM (E-TEM). Prior to the oxidation, the nano aluminum powder was visualized and analyzed by E-TEM and DTA respectively.The results show that there is an amorphous Al2O3 film of 5—6 nm thick on the surface of the aluminum powder, which transforms toγ-Al2O3 at a temperature range of 350—550℃. By melting the nano powder to liquid followed by cooling under a total pressure of 10-4 Pa in E-TEM, oxide-free solid aluminum is obtained. Re-melting of the solid aluminum at 720℃ yields oxide-free liquid aluminum. After oxidation of the oxide-free liquid aluminum under an oxygen partial pressure of 10-2 Pa in E-TEM, α-Al2O3 nano wires appear on the liquid aluminum surface, demonstrating that the initialoxidation product of liquid aluminum isα-Al2O3. Moreover,the oxidation of liquid aluminum prepared from oxide-free bulk aluminum at 720℃ under an oxygen partial pressure of 10-2 Pa was also studied. The XRD analysis of the products confirms that the oxide is constituted of singleα-Al2O3. Additionally, this particular oxidation result of liquid aluminum is attributed to its liquid structure and vapor oxidation process.

Key wordsliquid Al    oxidation    α-Al2O3    environmental transmission electron microscope
收稿日期: 2013-03-24     
基金资助:

中国工程物理研究院表面物理与化学国家重点实验室开放基金资助项目SPC201101

作者简介: 蔡俊, 男, 1986年生, 博士生

[1] Wu C M L, Han G W. Mater Charact, 2007; 58: 416

[2] Pint B A, Moser J L, Tortorelli P F. J Nucl Mater, 2007; 367-370: 1150
[3] Xian A P, Gong G L. J Electron Mater, 2007; 36: 1669
[4] Gong G L, Xian A P. Acta Metall Sin, 2007; 43: 759
 (贡国良, 冼爱平. 金属学报, 2007; 43: 759)
[5] Giuranno D, Arato E, Ricci E. Chem Eng Trans, 2011; 24: 571
[6] Zhang J S, Li N. Corros Sci, 2007; 49: 4154
[7] Nemchinsky V. J Phys, 2012; 45D: 465201
[8] Regan M J, Tostmann H, Pershan P S, Magnussen O M, Dimasi E, Ocko B M, Deutsch M. Phys Rev, 1997; 55B: 10786
[9] Levin I, Brandon D. J Am Ceram Soc, 1998; 81: 1995
[10] Sleppy W C. J Electrochem Soc, 1961; 108: 1097
[11] Moskovits M. Oxid Met, 1972; 5: 1
[12] Impley S A, Stephenson D J, Nicholls J R. Mater Sci Tech-Lond, 1988; 4: 1126
[13] Bergsmark E, Simensen C J, Kofstad P. Mater Sci Eng, 1989; A120: 91
[14] Shimizu K, Kobayashi K, Thompson G E, Wood G C. Oxid Met, 1991; 36: 1
[15] Puri P, Yang V. J Phys Chem, 2007; 111C: 11776
[16] Hasani S, Panjepour M, Shamanian M. Oxid Met, 2012; 78: 179
[17] Kishita K, Sakai H, Tanaka H, Saka H, Kuroda K, Sakamoto M, Watabe A,Kamino T. J Electron Microsc, 2009; 58: 331
[18] Eisenreich N, Fietzek H, Juez-Lorenzo M D, Kolarik V, Koleczko A,Weiser V. Propell Explos Pyrot, 2004; 29: 137
[19] Klumpes R, Maree C H M, Schramm E, Wit J H W. Werkst Korros, 1996; 47: 619
[20] Grabke H J. Intermetallics, 1999; 7: 1153
[21] Josefsson H, Liu F, Svensson J E, Halvarsson M, Johansson L G. Mater Corros,2005; 56: 801
[22] Kitajima Y, Hayashi S, Nishimoto T, Narita T, Ukai S. Oxid Met, 2010; 73: 375
[23] Iida T, Guthrie R I L, translated by Xian A P, Wang L W.The Physical Properties of Liquid Metals. Beijing: Science Press, 2005: 20
(Iida T, Guthrie R I L著, 冼爱平, 王连文译. 液态金属的物理性质. 北京:科学出版社, 2005: 20)
[24] Yang Z Y, Xian A P. Chin J Power Sources, 2011; 35: 66
(杨泽焱, 冼爱平. 电源技术, 2011; 35: 66)
[25] Castello P, Ricci E, Passerone A, Costa P. J Mater Sci, 1994; 29: 6104
[26] Arato E, Ricci E, Costa P. J Mater Sci, 2005; 40: 2133
[1] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[2] 黄鼎, 乔岩欣, 杨兰兰, 王金龙, 陈明辉, 朱圣龙, 王福会. 基体表面喷丸处理对纳米晶涂层循环氧化行为的影响[J]. 金属学报, 2023, 59(5): 668-678.
[3] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[4] 刘来娣, 丁彪, 任维丽, 钟云波, 王晖, 王秋良. DZ445镍基高温合金高温长时间氧化形成的多层膜结构[J]. 金属学报, 2023, 59(3): 387-398.
[5] 李昕, 江河, 姚志浩, 董建新. O原子对高温合金基体NiCoNiCr晶界作用的理论计算分析[J]. 金属学报, 2023, 59(2): 309-318.
[6] 徐文国, 郝文江, 李应举, 赵庆彬, 卢炳聿, 郭和一, 刘天宇, 冯小辉, 杨院生. 微量AlTiInconel 690合金高温氧化行为的影响[J]. 金属学报, 2023, 59(12): 1547-1558.
[7] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[8] 金鑫焱, 储双杰, 彭俊, 胡广魁. 露点对连续退火0.2%C-1.5%Si-2.5%Mn高强钢选择性氧化及脱碳的影响[J]. 金属学报, 2023, 59(10): 1324-1334.
[9] 胡敏, 周生玉, 国京元, 胡明昊, 李冲, 李会军, 王祖敏, 刘永长. 多相Ni3Al基高温合金微区氧化行为[J]. 金属学报, 2023, 59(10): 1346-1354.
[10] 丛鸿达, 王金龙, 王成, 宁珅, 高若恒, 杜瑶, 陈明辉, 朱圣龙, 王福会. 新型无机硅酸盐复合涂层制备及其在高温水蒸气环境的氧化行为[J]. 金属学报, 2022, 58(8): 1083-1092.
[11] 解磊鹏, 孙文瑶, 陈明辉, 王金龙, 王福会. 制备工艺对FGH4097高温合金微观组织与性能的影响[J]. 金属学报, 2022, 58(8): 992-1002.
[12] 孙蓉蓉, 姚美意, 林晓冬, 张文怀, 仇云龙, 胡丽娟, 谢耀平, 杨健, 董建新, 成国光. 添加TiFe22Cr5Al3Mo合金在500℃过热蒸汽中腐蚀行为的影响[J]. 金属学报, 2022, 58(5): 610-622.
[13] 赵晓峰, 李玲, 张晗, 陆杰. 热障涂层高熵合金粘结层材料研究进展[J]. 金属学报, 2022, 58(4): 503-512.
[14] 苏凯新, 张继旺, 张艳斌, 闫涛, 李行, 纪东东. 微弧氧化6082-T6铝合金的高周疲劳性能及残余应力松弛机理[J]. 金属学报, 2022, 58(3): 334-344.
[15] 彭俊, 金鑫焱, 钟勇, 王利. 基板表层组织对Fe-16Mn-0.7C-1.5Al TWIP钢可镀性的影响[J]. 金属学报, 2022, 58(12): 1600-1610.