Please wait a minute...
金属学报  2023, Vol. 59 Issue (10): 1346-1354    DOI: 10.11900/0412.1961.2021.00497
  研究论文 本期目录 | 过刊浏览 |
多相Ni3Al基高温合金微区氧化行为
胡敏, 周生玉, 国京元, 胡明昊, 李冲(), 李会军, 王祖敏, 刘永长
天津大学 材料科学与工程学院 水利安全与仿真国家重点实验室 天津 300354
Oxidation Behavior of Micro-Regions in Multiphase Ni3Al-Based Superalloys
HU Min, ZHOU Shengyu, GUO Jingyuan, HU Minghao, LI Chong(), LI Huijun, WANG Zumin, LIU Yongchang
State Key Lab of Hydraulic Engineering Simulation and Safety, School of Materials Science and Engineering, Tianjin University, Tianjin 300354, China
引用本文:

胡敏, 周生玉, 国京元, 胡明昊, 李冲, 李会军, 王祖敏, 刘永长. 多相Ni3Al基高温合金微区氧化行为[J]. 金属学报, 2023, 59(10): 1346-1354.
Min HU, Shengyu ZHOU, Jingyuan GUO, Minghao HU, Chong LI, Huijun LI, Zumin WANG, Yongchang LIU. Oxidation Behavior of Micro-Regions in Multiphase Ni3Al-Based Superalloys[J]. Acta Metall Sin, 2023, 59(10): 1346-1354.

全文: PDF(3693 KB)   HTML
摘要: 

以多相Ni3Al基高温合金为对象,通过热处理得到了3种微区结构:枝晶干γ' + γ两相区、枝晶间β相和包裹着枝晶间β相的γ'包覆层,研究了不同微区组织在1000℃的等温氧化行为。3个微区在氧化初期呈现出不同的氧化行为:γ'包覆层处为明显的双层氧化膜结构,呈现胞状凸起,外部是混合层(NiO、NiFe2O4和Al2O3),内部为单一Al2O3层,而枝晶干γ' + γ两相区和枝晶间β相形成单层Al2O3膜。随着等温氧化时间的延长,由于晶格扩散占据主导地位,不同微区氧化膜厚度差显著缩小,3个微区的氧化膜组成逐渐趋于一致,形成致密单一的Al2O3层。

关键词 Ni3Al基高温合金氧化行为γ'β    
Abstract

Ni3Al-based superalloys are widely used in aero-engine parts. In addition to having a good temperature bearing capacity, the oxidation resistance of the alloy is also high. In this work, a multiphase Ni3Al-based superalloy was selected as the experimental material. Three micro-regions (γ' + γ dendrite, interdendritic β phase, and γ' envelope) containing different phases were obtained by heat treatment. The isothermal oxidation behavior of the micro-regions was studied under 1000oC, where the three micro-regions exhibited different oxidation behaviors at the initial stage of oxidation. The γ' envelope has an obvious double-layer oxide scale showing a cellular bulge. The outer layer is a mixed layer (NiO, NiFe2O4, and Al2O3), and the inner layer is a single Al2O3 layer. However, the γ' + γ dendrite and the interdendritic β phase form a single layer of the Al2O3 film. With increasing isothermal oxidation time, the oxide scale composition of the three micro-regions gradually tends to be the same, forming a dense single Al2O3 layer.

Key wordsNi3Al-based superalloy    oxidation behavior    γ' phase    β phase
收稿日期: 2021-11-18     
ZTFLH:  TG132.3  
基金资助:国家自然科学基金项目(51774212);国家自然科学基金项目(52122409);天津市自然科学基金项目(20JCYBJC00950)
通讯作者: 李 冲,lichongme@tju.edu.cn,主要从事金属结构材料组织控制的研究
Corresponding author: LI Chong, professor, Tel: 13021398676, E-mail: lichongme@tju.edu.cn
作者简介: 胡 敏,女,1997年生,硕士生
图1  Ni3Al基高温合金热处理后显微组织的SEM像
Position in Fig.1bAlFeCrNi
1 (γ' + γ dendrite)8.518.612.460.5
2 (interdendritic β phase)27.28.91.562.4
3 (γ' envelope)19.46.62.271.8
表1  Ni3Al基高温合金不同区域化学成分的EDS分析 (atomic fraction / %)
图2  Ni3Al基高温合金在1000℃氧化10 min后表面形貌的SEM像
图3  Ni3Al基高温合金在1000℃氧化30及100 h后表面形貌的SEM像
图4  Ni3Al基高温合金在1000℃氧化10 min和100 h的XRD谱
图5  Ni3Al基高温合金在1000℃氧化10 min和100 h后不同区域表面氧化膜的Raman光谱
图6  Ni3Al基高温合金在1000℃氧化10 min后不同微区的Auger电子能谱(AES)元素深度分布
图7  枝晶干γ' + γ在1000℃氧化10 min后截面形貌的TEM像、选区电子衍射(SAED)花样以及框线区域的EDS元素面扫分布
图8  枝晶间β相在1000℃氧化10 min后截面形貌的TEM像、SAED花样以及框线区域的EDS元素面扫分布
图9  γ'包覆层在1000℃氧化10 min后截面形貌的TEM像、SAED花样以及相应的EDS元素面扫分布
图10  Ni3Al基高温合金在1000℃氧化30 h截面形貌的SEM-BSE像和相应的EDS元素分布
图11  Ni3Al基高温合金在1000℃氧化100 h截面形貌的SEM-BSE像和相应的EDS元素分布
1 Sikka V K, Deevi S C, Viswanathan S, et al. Advances in processing of Ni3Al-based intermetallics and applications [J]. Intermetallics, 2000, 8: 1329
doi: 10.1016/S0966-9795(00)00078-9
2 Qian M, Luo H L, Ding C H, et al. The effect of long term high temperature annealing on twinning and detwinning of the wrought Ni3Al-based alloy [J]. Mater. Charact., 2017, 132: 458
doi: 10.1016/j.matchar.2017.09.015
3 Raju S V, Godwal B K, Singh A K, et al. High-pressure strengths of Ni3Al and Ni-Al-Cr [J]. J. Alloys Compd., 2018, 741: 642
doi: 10.1016/j.jallcom.2018.01.142
4 Zhao J C, Westbrook J H. Ultrahigh-temperature materials for jet engines [J]. MRS Bull., 2003, 28: 622
doi: 10.1557/mrs2003.189
5 Wu Y T, Li C, Xia X C, et al. Precipitate coarsening and its effects on the hot deformation behavior of the recently developed γ'- strengthened superalloys [J]. J. Mater. Sci. Technol., 2021, 67: 95
doi: 10.1016/j.jmst.2020.06.025
6 Wu Y T, Li C, Li Y F, et al. Effects of heat treatment on the microstructure and mechanical properties of Ni3Al-based superalloys: A review [J]. Int. J. Miner. Metall. Mater., 2021, 28: 553
doi: 10.1007/s12613-020-2177-y
7 Wu J, Liu Y C, Li C, et al. Recent progress of microstructure evolution and performance of multiphase Ni3Al-based intermetallic alloy with high Fe and Cr contents [J]. Acta Metall. Sin., 2020, 56: 21
7 吴 静, 刘永长, 李 冲 等. 高Fe、Cr含量多相Ni3Al基高温合金组织与性能研究进展 [J]. 金属学报, 2020, 56: 21
8 Pei J L, Li Y F, Li C, et al. Microstructure-dependent oxidation behavior of Ni-Al single-crystal alloys [J]. J. Mater. Sci. Technol., 2020, 52: 162
doi: 10.1016/j.jmst.2020.04.006
9 Takeyama M, Liu C T. Surface oxidation and ductility loss in boron-doped Ni3Al at 760oC [J]. Scr. Metall., 1989, 23: 727
doi: 10.1016/0036-9748(89)90520-6
10 Liu C T, White C L. Dynamic embrittlement of boron-doped Ni3Al alloys at 600oC [J]. Acta Metall., 1987, 35: 643
doi: 10.1016/0001-6160(87)90187-8
11 Gao Q Z, Liu Z Y, Li H J, et al. High-temperature oxidation behavior of modified 4Al alumina-forming austenitic steel: Effect of cold rolling [J]. J. Mater. Sci. Technol., 2021, 68: 91
doi: 10.1016/j.jmst.2020.08.013
12 Mu N, Izumi T, Zhang L, et al. Compositional factors affecting the oxidation behavior of Pt-modified γ-Ni plus γ'-Ni3Al-based alloys and coatings [J]. Mater. Sci. Forum, 2008, 595-598: 239
doi: 10.4028/www.scientific.net/MSF.595-598
13 Choi S C, Cho H J, Kim Y J, et al. High-temperature oxidation behavior of pure Ni3Al [J]. Oxid. Met., 1996, 46: 51
doi: 10.1007/BF01046884
14 Qiu J, Zhao W J, Guilbert T, et al. High temperature oxidation behaviours of three zirconium alloys [J]. Acta Metall. Sin., 2011, 47: 1216
14 邱 军, 赵文金, Guilbert T 等. 3种锆合金的高温氧化行为 [J]. 金属学报, 2011, 47: 1216
15 Moussa S O, Morsi K. High-temperature oxidation of reactively processed nickel aluminide intermetallics [J]. J. Alloys Compd., 2006, 426: 136
doi: 10.1016/j.jallcom.2006.02.008
16 Xu Y, Sakurai J, Teraoka Y, et al. Initial oxidation behavior of Ni3Al (210) surface induced by supersonic oxygen molecular beam at room temperature [J]. Appl. Surf. Sci., 2017, 391: 18
doi: 10.1016/j.apsusc.2016.01.259
17 Huang Z Y, Jiang Y S, Hou A L, et al. Rietveld refinement, microstructure and high-temperature oxidation characteristics of low-density high manganese steels [J]. J. Mater. Sci. Technol., 2017, 33: 1531
doi: 10.1016/j.jmst.2017.09.012
18 Wang X, Szpunar J A. Effects of grain sizes on the oxidation behavior of Ni-based alloy 230 and N [J]. J. Alloys Compd., 2018, 752: 40
doi: 10.1016/j.jallcom.2018.04.173
19 Dong H, Ye Z F, Wang P, et al. Effect of cold rolling on the oxidation resistance of T91 steel in oxygen-saturated stagnant liquid lead-bismuth eutectic at 450oC and 550oC [J]. J. Nucl. Mater., 2016, 476: 213
doi: 10.1016/j.jnucmat.2016.04.046
20 Zhao K, Zhou Y B, Ma Y H, et al. Effect of microstructure on the oxidation behavior of two nickel-based superalloys [J]. Corrosion, 2005, 61: 961
doi: 10.5006/1.3280896
21 Bouchaud B, Balmain J, Barrere D, et al. Effect of water drops on the oxidation mechanisms of a ceria coated nickel-based superalloy [J]. Corros. Sci., 2013, 68: 176
doi: 10.1016/j.corsci.2012.11.010
22 da Cunha Belo M, Walls M, Hakiki N E, et al. Composition, structure and properties of the oxide films formed on the stainless steel 316L in a primary type PWR environment [J]. Corros. Sci., 1998, 40: 447
doi: 10.1016/S0010-938X(97)00158-3
23 Maslar J E, Hurst W S, Bowers W J, et al. In situ Raman spectroscopic investigation of stainless steel hydrothermal corrosion [J]. Corrosion, 2002, 58: 739
doi: 10.5006/1.3277656
24 Guo J Y, Li Y F, Li C, et al. Isothermal oxidation behavior of micro-regions in multiphase Ni3Al-based superalloys [J]. Mater. Charact., 2021, 171: 110748
doi: 10.1016/j.matchar.2020.110748
25 Maslar J E, Hurst W S, Bowers W J, et al. In situ Raman spectroscopic investigation of nickel hydrothermal corrosion [J]. Corrosion, 2002, 58: 225
doi: 10.5006/1.3279873
26 Kim J H, Hwang I S. Development of an in situ Raman spectroscopic system for surface oxide films on metals and alloys in high temperature water [J]. Nucl. Eng. Des., 2005, 235: 1029
doi: 10.1016/j.nucengdes.2004.12.002
27 Song P, Chen R, Feng J, et al. Microstructure analysis of initial alumina of Pt-modified aluminide coatings on Ni-based alloy [J]. Acta Metall. Sin., 2017, 53: 1504
27 宋 鹏, 陈 榕, 冯 晶 等. 镍基合金表面Pt改性铝化物涂层的初期Al2O3微观结构分析 [J]. 金属学报, 2017, 53: 1504
28 Niu Y, Hou Y. Characterization of pore development at Al2O3/FeAl interface during high temperature oxidation [J]. Acta Metall. Sin., 2003, 39: 1065
28 牛 焱, 侯 嫣. 高温氧化时Al2O3/FeAl界面孔洞形成过程的分析 [J]. 金属学报, 2003, 39: 1065
29 Reed R C. The Superalloys: Fundamentals and Applications [M]. Cambridge, UK: Cambridge University Press, 2006: 2
30 Bei H, George E P. Microstructures and mechanical properties of a directionally solidified NiAl-Mo eutectic alloy [J]. Acta Mater., 2005, 53: 69
doi: 10.1016/j.actamat.2004.09.003
31 Konrad C H, Völkl R, Glatzel U. Determination of oxygen diffusion along nickel/zirconia phase boundaries by internal oxidation [J]. Oxid. Met., 2012, 77: 149
doi: 10.1007/s11085-011-9278-y
32 Liu Y C, Wei W F, Benum L, et al. Oxidation behavior of Ni-Cr-Fe-based alloys: Effect of alloy microstructure and silicon content [J]. Oxid. Met., 2010, 73: 207
doi: 10.1007/s11085-009-9172-z
33 Ding Q Q, Shen Z J, Xiang S S, et al. In-situ environmental TEM study of γ'-γ phase transformation induced by oxidation in a nickelbased single crystal superalloy [J]. J. Alloys Compd., 2015, 651: 255
doi: 10.1016/j.jallcom.2015.07.017
34 Zhang J Y. Physical Chemistry in Metallurgy [M]. Beijing: Metallurgical Industry Press, 2004: 312
34 张家芸. 冶金物理化学 [M]. 北京: 冶金工业出版社, 2004: 312
35 Wallwork G R, Hed A Z. Some Limiting factors in the use of alloys at high temperatures [J]. Oxid. Met., 1971, 3: 171
doi: 10.1007/BF00603485
[1] 颜孟奇, 陈立全, 杨平, 黄利军, 佟健博, 李焕峰, 郭鹏达. 热变形参数对TC18钛合金β相组织及织构演变规律的影响[J]. 金属学报, 2021, 57(7): 880-890.
[2] 刘洪喜,李正学,张晓伟,谭军,蒋业华. 热处理对钛合金表面激光原位合成高铌Ti-Al金属间化合物涂层高温抗氧化行为的影响[J]. 金属学报, 2017, 53(2): 201-210.
[3] 张来启,潘昆明,段立辉,林均品. 原位合成MoSi2-SiC复合材料在500℃的氧化行为[J]. 金属学报, 2013, 49(11): 1303-1310.
[4] 叶长江;李铁藩;周龙江. 晶粒尺寸对含Zr的Ni_3Al合金氧化行为的影响[J]. 金属学报, 1995, 31(15): 109-115.