Please wait a minute...
金属学报  2022, Vol. 58 Issue (3): 334-344    DOI: 10.11900/0412.1961.2020.00528
  研究论文 本期目录 | 过刊浏览 |
微弧氧化6082-T6铝合金的高周疲劳性能及残余应力松弛机理
苏凯新1, 张继旺1(), 张艳斌2, 闫涛3, 李行1, 纪东东1
1.西南交通大学 牵引动力国家重点实验室 成都 610031
2.西南交通大学 机械工程学院 成都 610031
3.保德利电气设备有限责任公司 宝鸡 721000
High-Cycle Fatigue Properties and Residual Stress Relaxation Mechanism of Micro-Arc Oxidation 6082-T6 Aluminum Alloy
SU Kaixin1, ZHANG Jiwang1(), ZHANG Yanbin2, YAN Tao3, LI Hang1, JI Dongdong1
1.State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, China
2.School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China
3.Bj -baodeli Electrical Equipment Co. , Ltd. , Baoji 721000, China
引用本文:

苏凯新, 张继旺, 张艳斌, 闫涛, 李行, 纪东东. 微弧氧化6082-T6铝合金的高周疲劳性能及残余应力松弛机理[J]. 金属学报, 2022, 58(3): 334-344.
Kaixin SU, Jiwang ZHANG, Yanbin ZHANG, Tao YAN, Hang LI, Dongdong JI. High-Cycle Fatigue Properties and Residual Stress Relaxation Mechanism of Micro-Arc Oxidation 6082-T6 Aluminum Alloy[J]. Acta Metall Sin, 2022, 58(3): 334-344.

全文: PDF(2602 KB)   HTML
摘要: 

为研究微弧氧化(MAO)处理对高速铁路接触网腕臂用6082-T6铝合金高周疲劳性能的影响,开展了6082-T6铝合金未处理(UP)及MAO处理试样的旋转弯曲疲劳实验,获得了循环应力与疲劳寿命(S-N)曲线。采用激光共聚焦显微镜、纳米压痕仪、XRD和SEM研究了试样的表面形貌及粗糙度、剖面形貌、剖面纳米硬度和弹性模量梯度分布、膜层相成分以及疲劳断口形貌,采用X射线残余应力分析仪获得了不同循环应力下MAO试样膜层-基体界面残余应力的松弛行为。实验结果表明:微弧氧化处理试样的表面形貌严重恶化,并且在膜层与基体交界处存在较大的残余拉应力,导致疲劳性能大幅度降低。此外,当循环应力和基体残余拉应力(平衡膜层的残余应力)之和大于基体材料的循环屈服强度时,膜层-基体界面残余拉应力出现松弛。最后,采用失配应变理论分析了膜层-基体界面残余拉应力的形成机理及其在外加循环应力作用下的松弛机理,深入讨论了在高循环应力和低循环应力作用下,膜层对基体疲劳性能的影响。

关键词 铝合金微弧氧化残余应力疲劳性能    
Abstract

Recently, the fatigue failure of aluminum alloy components of high-speed railway catenary is becoming increasingly serious, which causes a threat to the normal operation of high-speed trains. In this study, the effect of micro-arc oxidation (MAO) coating on the high-cycle fatigue properties of 6082-T6 aluminum alloy for the catenary cantilever of the high-speed railway was studied. First, the rotating bending fatigue tests of untreated (UP) and MAO specimens of 6082-T6 aluminum alloy were performed. Then, the surface morphology and roughness, cross-section morphology, nanoindentation hardness, and elastic modulus gradient distribution, phase composition of MAO coating, and fatigue fracture morphology of the fatigue samples were studied by a confocal laser microscope, nanoindentation, XRD, and SEM. The experimental results showed that after MAO treatment, a large number of micro-cracks and pores were formed on the surface of the samples, and the morphology of the samples severely deteriorated. The XRD results indicated that the closer the coating surface, the stronger was the diffraction peaks of α-Al2O3 and γ-Al2O3. Besides, there was the higher tensile residual stress at the coating-substrate interface, which led to a significant reduction in fatigue properties. The fatigue strength decreased by 26.7% at 2 × 107 cyc. Finally, the formation and relaxation mechanisms of tensile residual stress under cyclic stress were analyzed using mismatch strain theory, and the effects of the coating on the fatigue properties of the substrate under high and low cyclic stresses were discussed further.

Key wordsaluminum alloy    micro-arc oxidation    residual stress    fatigue property
收稿日期: 2020-12-29     
ZTFLH:  TG174.4  
基金资助:国家自然科学基金项目(52075457)
作者简介: 苏凯新,男,1996年生,博士生
图1  力学性能和疲劳性能试样形状及尺寸
图2  残余应力测量示意图
TreatmentElastic modulusYield strengthUltimate tensileElongationSection shrinkage
GPaMPastrength / MPa%%
UP69.4 ± 2.2317.9 ± 9.4347.4 ± 7.08.2 ± 0.134.5 ± 0.3
MAO67.2 ± 0.2337.7 ± 0.2350.9 ± 0.68.7 ± 0.634.8 ± 0.8
表1  6082-T6 Al合金未处理(UP)和微弧氧化(MAO)试样的力学性能
图3  UP和MAO试样表面形貌及三维轮廓
TreatmentRaRzRmax
UP0.07 ± 0.000.60 ± 0.100.83 ± 0.28
MAO2.65 ± 0.0587.22 ± 9.5893.69 ± 7.30
表2  UP和MAO试样的表面粗糙度 (μm)
图4  MAO膜层表面及内部XRD谱
图5  剖面形貌
图6  膜层硬度及弹性模量分布
图7  UP和MAO试样的循环应力-疲劳寿命曲线
图8  UP和MAO试样的断口形貌(a) UP sample (cyclic stress: 220 MPa) (b) MAO sample (cyclic stress: 180 MPa)
图9  不同循环应力下MAO试样的残余拉应力松弛
图10  MAO膜层-基体界面残余拉应力形成及松弛机理
图11  不同循环应力下MAO试样相比UP试样疲劳寿命的变化趋势
1 Starke E A, Staley J T. Application of modern aluminum alloys to aircraft [J]. Prog. Aeosp. Sci., 1996, 32: 131
2 Heinz A, Haszler A, Keidel C, et al. Recent development in aluminium alloys for aerospace applications [J]. Mater. Sci. Eng., 2000, A280: 102
3 Krishna L R, Somaraju K R C, Sundararajan G. The tribological performance of ultra-hard ceramic composite coatings obtained through microarc oxidation [J]. Surf. Coat. Technol., 2003, 163-164: 484
4 Krishna L R, Purnima A S, Sundararajan G. A comparative study of tribological behavior of microarc oxidation and hard-anodized coatings [J]. Wear, 2006, 261: 1095
5 Lonyuk B, Apachitei I, Duszczyk J. The effect of oxide coatings on fatigue properties of 7475-T6 aluminium alloy [J]. Surf. Coat. Technol., 2007, 201: 8688
6 Wasekar N P, Jyothirmayi A, Sundararajan G. Influence of prior corrosion on the high cycle fatigue behavior of microarc oxidation coated 6061-T6 Aluminum alloy [J]. Int. J. Fatigue, 2011, 33: 1268
7 Nie X, Meletis E I, Jiang J C, et al. Abrasive wear/corrosion properties and TEM analysis of Al2O3 coatings fabricated using plasma electrolysis [J]. Surf. Coat. Technol., 2002, 149: 245
8 Barik R C, Wharton J A, Wood R J K, et al. Corrosion, erosion and erosion-corrosion performance of plasma electrolytic oxidation (PEO) deposited Al2O3 coatings [J]. Surf. Coat. Technol., 2005, 199: 158
9 Wen L, Wang Y M, Zhou Y, et al. Corrosion evaluation of microarc oxidation coatings formed on 2024 aluminium alloy [J]. Corros. Sci., 2010, 52: 2687
10 Gecu R, Yurekturk Y, Tekoglu E, et al. Improving wear resistance of 304 stainless steel reinforced AA7075 aluminum matrix composite by micro-arc oxidation [J]. Surf. Coat. Technol., 2019, 368: 15
11 Kong D J, Liu H, Wang J C. Effects of micro arc oxidation on fatigue limits and fracture morphologies of 7475 high strength aluminum alloy [J]. J. Alloys Compd., 2015, 650: 393
12 Dai W B, Liu Z H, Li C Y, et al. Fatigue life of micro-arc oxidation coated AA2024-T3 and AA7075-T6 alloys [J]. Int. J. Fatigue, 2019, 124: 493
13 Wang Y M, Zhang P F, Guo L X, et al. Effect of microarc oxidation coating on fatigue performance of Ti-Al-Zr alloy [J]. Appl. Surf. Sci., 2009, 255: 8616
14 Khan R H U, Yerokhin A, Li X, et al. Surface characterisation of DC plasma electrolytic oxidation treated 6082 aluminium alloy: Effect of current density and electrolyte concentration [J]. Surf. Coat. Technol., 2010, 205: 1679
15 Leoni A, Apachitei I, Riemslag A C, et al. In vitro fatigue behavior of surface oxidized Ti35Zr10Nb biomedical alloy [J]. Mater. Sci. Eng., 2011, C31: 1779
16 Madhavi Y, Krishna L R, Narasaiah N. Influence of micro arc oxidation coating thickness and prior shot peening on the fatigue behavior of 6061-T6 Al alloy [J]. Int. J. Fatigue, 2019, 126: 297
17 Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments [J]. J. Mater. Res., 1992, 7: 1564
18 Lin J, Ma N S, Lei Y P, et al. Measurement of residual stress in arc welded lap joints by cosα X-ray diffraction method [J]. J. Mater. Process. Technol., 2017, 243: 387
19 Dai W B, Li C Y, He D, et al. Influence of duty cycle on fatigue life of AA2024 with thin coating fabricated by micro-arc oxidation [J]. Surf. Coat. Technol., 2019, 360: 347
20 Li J, Sun Q, Zhang Z P, et al. Theoretical estimation to the cyclic yield strength and fatigue limit for alloy steels [J]. Mech. Res. Commun., 2009, 36: 316
21 Bäumel A, Seeger T. Materials Data for Cyclic Loading [M]. Amsterdam: Elsevier, 1990: 1
22 Wasekar N P, Ravi N, Babu P S, et al. High-cycle fatigue behavior of microarc oxidation coatings deposited on a 6061-T6 Al alloy [J]. Metall. Mater. Trans., 2010, 41A: 255
23 Gu W C, Lv G H, Chen H, et al. Characterisation of ceramic coatings produced by plasma electrolytic oxidation of aluminum alloy [J]. Mater. Sci. Eng., 2007, A447: 158
24 Krishna L R, Gupta P S V N B, Sundararajan G. The influence of phase gradient within the micro arc oxidation (MAO) coatings on mechanical and tribological behaviors [J]. Surf. Coat. Technol., 2015, 269: 54
25 Xue W B, Deng Z W, Chen R Y, et al. Distribution of hardness and elastic modulus near the interface between aluminum alloy substrate and microarc oxidation coating [J]. Acta Metall. Sin., 1999, 35: 638
25 薛文斌, 邓志威, 陈如意等. 铝合金微弧氧化膜与基体界面区的硬度和弹性模量分布 [J]. 金属学报, 1999, 35: 638
26 Malyshev V. Mikrolichtbogen-oxidation: EIN neuartiges verfahren zur verfestigung von aluminiumoberflächen [J]. Metalloberflaeche, 1995, 49: 606
27 Dai W B, Li C Y, He D, et al. Mechanism of residual stress and surface roughness of substrate on fatigue behavior of micro-arc oxidation coated AA7075-T6 alloy [J]. Surf. Coat. Technol., 2019, 380: 125014
28 Su K X, Zhang J W, Li H, et al. Analysis on the fatigue properties of shot-peened Al-Si-Mg alloy and its fatigue life prediction [J]. J. Mater. Eng. Perform., 2020, 29: 5114
29 Schijve J. Fatigue of Structures and Materials [M]. New York: Springer Science & Business Media, 2001: 1
30 Hadzima B, Nový F, Trško L, et al. Shot peening as a pre-treatment to anodic oxidation coating process of AW 6082 aluminum for fatigue life improvement [J]. Int. J. Adv. Manuf. Technol., 2017, 93: 3315
31 Krishna L R, Madhavi Y, Sahithi T, et al. Influence of prior shot peening variables on the fatigue life of micro arc oxidation coated 6061-T6 Al alloy [J]. Int. J. Fatigue, 2018, 106: 165
32 Freund L B, Suresh S. Thin Film Materials: Stress, Defect Formation and Surface Evolution [M]. Cambridge: Cambridge University Press, 2004: 1
33 Dai W B, Hao J, Li C Y, et al. Residual stress relaxation and duty cycle on high cycle fatigue life of micro-arc oxidation coated AA7075-T6 alloy [J]. Int. J. Fatigue, 2020, 130: 105283
34 Kim J C, Cheong S K, Noguchi H. Residual stress relaxation and low- and high-cycle fatigue behavior of shot-peened medium-carbon steel [J]. Int. J. Fatigue, 2013, 56: 114
35 Zhong W, Ding Y L, Song Y S, et al. Relaxation effect of welding residual stress in deck-to-rib joints [J]. J. Zhejiang Univ. (Eng. Sci.), 2020, 54: 83
35 钟 雯, 丁幼亮, 宋永生等. 顶板-纵肋焊接细节残余应力的松弛效应 [J]. 浙江大学学报(工学版), 2020, 54: 83
36 Zhang J W, Lu L T, Shiozawa K, et al. Analysis on fatigue property of microshot peened railway axle steel [J]. Mater. Sci. Eng., 2011, A528: 1615
37 Ishihara S, Saka S, Nan Z Y, et al. Prediction of corrosion fatigue lives of aluminium alloy on the basis of corrosion pit growth law [J]. Fatigue Fract. Eng. Mater. Struct., 2006, 29: 472
[1] 杜金辉, 毕中南, 曲敬龙. 三联冶炼GH4169合金研究进展[J]. 金属学报, 2023, 59(9): 1159-1172.
[2] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[3] 李时磊, 李阳, 王友康, 王胜杰, 何伦华, 孙光爱, 肖体乔, 王沿东. 基于中子与同步辐射技术的工程材料/部件多尺度残余应力评价[J]. 金属学报, 2023, 59(8): 1001-1014.
[4] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[5] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[6] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[7] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[8] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[9] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[10] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[11] 宋文硕, 宋竹满, 罗雪梅, 张广平, 张滨. 粗糙表面高强铝合金导线疲劳寿命预测[J]. 金属学报, 2022, 58(8): 1035-1043.
[12] 吴进, 杨杰, 陈浩峰. 纳入残余应力时不同拘束下DMWJ的断裂行为[J]. 金属学报, 2022, 58(7): 956-964.
[13] 王春辉, 杨光昱, 阿热达克·阿力玛斯, 李晓刚, 介万奇. 砂型3DP打印参数对ZL205A合金铸造性能的影响[J]. 金属学报, 2022, 58(7): 921-931.
[14] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[15] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.