Please wait a minute...
金属学报  2013, Vol. 49 Issue (8): 946-952    DOI: 10.3724/SP.J.1037.2013.00239
  论文 本期目录 | 过刊浏览 |
微合金化4043铝合金焊丝焊接接头的组织与性能
赵志浩,徐振,王高松,崔建忠
东北大学材料电磁过程研究教育部重点实验室, 沈阳 110819
MICROSTRUCTURE AND PROPERTY OF WELDING JOINT WELD WITH MICRO-ALLOYING 4043 WELDING WIRE
ZHAO Zhihao, XU Zhen, WANG Gaosong, CUI Jianzhong
Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education,Northeastern University,Shenyang 110819
引用本文:

赵志浩,徐振,王高松,崔建忠. 微合金化4043铝合金焊丝焊接接头的组织与性能[J]. 金属学报, 2013, 49(8): 946-952.
ZHAO Zhihao, XU Zhen, WANG Gaosong, CUI Jianzhong. MICROSTRUCTURE AND PROPERTY OF WELDING JOINT WELD WITH MICRO-ALLOYING 4043 WELDING WIRE[J]. Acta Metall Sin, 2013, 49(8): 946-952.

全文: PDF(816 KB)  
摘要: 

在传统4043铝合金焊丝基础上, 通过单独和复合添加Mg, Zr和Sc对4043铝合金焊丝进行微合金化,使微合金化焊丝焊后的焊接接头可热处理强化, 并对其热处理工艺进行优化.使用传统4043铝合金焊丝和微合金化后的铝合金焊丝进行焊接实验.对比焊后焊接接头的显微组织和力学性能发现, 添加0.25% Mg(质量分数)可以改善铝合金焊丝焊后的焊接接头的显微组织,提高焊接接头的抗拉和屈服强度, 抗拉强度提高10%, 屈服强度提高12%, 而延伸率基本保持不变.经530℃, 2 h+170℃, 6 h热处理后, 焊接接头的抗拉强度提高54%,屈服强度提高105%. 焊丝中添加Sc和Zr可以明显细化焊缝组织的晶粒,增加热处理后强化相析出数量, 提高焊接接头的抗拉和屈服强度.

关键词 4043铝合金焊丝微合金化显微组织力学性能焊后热处理    
Abstract

Aluminum alloys have been widely used in civil fields and war industry as structural materials due to their good corrosion resistance, electrical conductivity, thermal conductivity and high specific strength. But there is a serious problem of welding joints softening in welding process, which limits greatly the application of aluminum alloys. It is found that improving the composition of aluminum alloy welding wire can refine grains and enhance the mechanical properties of welding joints. Of all micro-alloying additions to aluminum, Sc offers the greatest potential for developing new light weight structural materials with excellent mechanical properties, good welding performance, desirable corrosion and creep resistance, due to the formation of extremely fine, coherent Al3Sc particles, which can effectively refine grains and inhibit recrystallization. This aspect permits to increase the possible use of commercial aluminum alloys. The strengthening mechanism is due to the coherent thermodynamically stable particles with ordered L12 structure. Addition of sufficient amount of magnesium can enhance the nucleation rate of Al3Sc. It was shown that clusters of Mg atoms were found at the center of Al3Sc particles, suggesting that Mg promotes nucleation of these particles. Moreover, addition of zirconium substitutes for scandium(for up to half of the scandium atoms) to form Al3(Sc, Zr) precipitates, which are more resistant to coarsening than binary Al3Sc precipitates. Micro--alloying aluminum alloy welding wires which can be strengthened by heat treatment were designed by adding Mg, Sc and Zr to the traditional 4043 aluminum alloy welding wire, and the heat treatment process was optimized. Welding experiment was carried out using the traditional 4043 aluminum alloy welding wire and  micro-alloying aluminum alloy welding wires. After comparing the microstructures and mechanical properties of welding joints, it was found that the mechanical properties of welding joints could be improved when adding 0.25% Mg to the 4043 aluminum alloy welding wire. The yield strength increased by 12% and the tensile strength increased by 10%, while the elongation remained constant substantially. After 530℃, 2 h+170℃, 6 h heat treatment, the yield strength of the welding joints increased by 105% and the tensile strength increased by 54%. The additions of Sc and Zr to the welding wires resulted in the finer grains significantly, raising the number of strengthening phase and increasing the strength of the welding joints.

Key words4043 aluminum welding wire    micro-alloying, microstructure    mechanical property    post-weld heat treatment
收稿日期: 2013-05-02     
基金资助:

国家自然科学基金项目51004036和教育部基本科研业务费项目N110408005资助

作者简介: 赵志浩, 男, 1976年生, 副教授, 博士

[1] Zhou W S, Yao J S.  Welding of Aluminum and It's Alloy.Beijing: China Machine Press, 2006: 1

 (周万盛, 姚君山. 铝及铝合金的焊接. 北京: 机械工业出版社, 2006: 1)
[2] Shi Y W.  Welding Handbook. Fuzhou: Science and Technology Press, 2005: 1
 (史耀武. 焊接技术手册. 福州: 科学技术出版社, 2005: 1)
[3] Wang Z T, Tian R Z.  Handbook of Aluminum Alloy and Processing. Changsha:Central South University of Technology Press, 1989: 1
 (王祝堂, 田荣璋. 铝合金及其加工手册. 长沙: 中南工业大学出版社, 1989: 1)
[4] Coniglio N, Cross C E, Dorfel I, Osterle W.  Mater Sci Eng, 2009; A517: 321
[5] Babu N K, Talari M K, Pan D Y, Sun Z, Wei J, Siva P K.  Mater Des, 2012; 40: 467
[6] Liu J A, Wang Y L, Qu J S.  Trans Nonferrous Met Soc China, 1996; 6: 87
 (刘静安, 王元良, 屈金山. 中国有色金属学报, 1996; 6: 87)
[7] Tian Z L, Xu L H, Peng Y, Zhang X M, Li R.  Acta Metall Sin, 2008; 44: 91
 (田志凌, 许良红, 彭云, 张晓牧, 李冉. 金属学报, 2008; 44: 91)
[8] Devincent S M, Devletian J H, Gedeon S A.  Weld J, 1988; 67: 33
[9] Janaki R, Mitra T K, Olson D L.  Mater Sci Eng, 2000; A276: 48
[10] Royset J, Ryum N.  Int Mater Res, 2005; 50: 19
[11] Vijaya S, Prasad S K, Gokhale A.  Scr Mater, 2004; 50: 903
[12] Norman A F, Hyde K, Costello F, Thompson S, Birley S, Prangnell P B. Mater Sci Eng, 2003; A354: 188
[13] Fuller C B, Krause A R, Dunand D C, Seidman D N.  Mater Sci Eng, 2002; A338: 8
[14] Forbord B, Hallem H, Lefebvre W, Danoix F, Marthinsen K.  Mater Sci Eng,2006; A421: 154
[15] Rao S K, Raju N P, Reedy G M, Kamaraj M, Rao P K.  Mater Sci Technol,2009; 25: 92
[16] Du G, Yan D S, Rong L J.  Acta Metall Sin, 2008; 44: 1209
 (杜刚, 闫德胜, 戎利建. 金属学报, 2008; 44: 1209)
[17] Zuo X R, Cui H C.  Adv Mater Res, 2011; 152: 1071
[18] Cavaliere P, Cabibbo M.  Mater Charact, 2008; 59: 197
[19] Riddle Y W, Sanders T H J.  Mater Sci Forum, 2000; 331: 799
[20] Kaigorodova L I, Selnikhina E I, Tkachenko E A, Senatorova O G.  Phys Met Metall,1996; 81: 513
[21] Peng Y Y, Yin Z M, Nie B, Wang T.  Mater Sci Forum, 2007; 546: 863
[22] Zhang Y H, Yin Z M, Zhang J, Pan Q L, Peng Z H.  Rare Met Mater Eng, 2002; 31: 167
[23] Costa S, Puga H, Barbosa J, Pinto A M P.  Mater Des, 2012; 42: 347
[24] Yin Z, Pan Q, Zhang Y, Jiang F.  Mater Sci Eng, 2000, A280: 151
[25] Wang Y L, Qu J S, Yan C P.  Trans Nonferrous Met Soc China, 1997; 7: 69
 (王元良, 屈金山, 宴传鹏. 中国有色金属学报, 1997; 7: 69)
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[6] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[10] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[13] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[14] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[15] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.