Please wait a minute...
金属学报  2022, Vol. 58 Issue (8): 1083-1092    DOI: 10.11900/0412.1961.2021.00044
  研究论文 本期目录 | 过刊浏览 |
新型无机硅酸盐复合涂层制备及其在高温水蒸气环境的氧化行为
丛鸿达1, 王金龙1(), 王成2,3, 宁珅1, 高若恒1, 杜瑶2, 陈明辉1, 朱圣龙2, 王福会1
1.东北大学 沈阳材料科学国家研究中心东北大学联合研究分部 沈阳 110819
2.中国科学院金属研究所 沈阳 110016
3.江苏集萃道路工程技术与装备研究所有限公司 徐州 220005
A New Design Inorganic Silicate Composite Coating and Its Oxidation Behavior at High Temperature in Steam Atmosphere
CONG Hongda1, WANG Jinlong1(), WANG Cheng2,3, NING Shen1, GAO Ruoheng1, DU Yao2, CHEN Minghui1, ZHU Shenglong2, WANG Fuhui1
1.Shenyang National Key Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.Jiangsu JITRI Road Engineering Technology and Equipment Research Institude Co. Ltd., Xuzhou 220005, China
引用本文:

丛鸿达, 王金龙, 王成, 宁珅, 高若恒, 杜瑶, 陈明辉, 朱圣龙, 王福会. 新型无机硅酸盐复合涂层制备及其在高温水蒸气环境的氧化行为[J]. 金属学报, 2022, 58(8): 1083-1092.
Hongda CONG, Jinlong WANG, Cheng WANG, Shen NING, Ruoheng GAO, Yao DU, Minghui CHEN, Shenglong ZHU, Fuhui WANG. A New Design Inorganic Silicate Composite Coating and Its Oxidation Behavior at High Temperature in Steam Atmosphere[J]. Acta Metall Sin, 2022, 58(8): 1083-1092.

全文: PDF(2500 KB)   HTML
摘要: 

以CB2钢为基体,设计并制备了一种新型无机硅酸盐复合涂层。使用高温水蒸气模拟装置对比研究了CB2钢与涂层试样在650℃高温水蒸气条件下服役1000 h的氧化行为。结果表明,与无涂层的CB2钢样品相比,施加防护涂层的CB2钢的氧化速率减缓30倍,涂层起到了良好的保护作用。CB2钢经氧化1000 h后,氧化层表层疏松且有明显空隙等缺陷,氧化产物以Fe2O3为主;无机硅酸盐复合涂层显著提高了CB2钢的抗氧化性能,经过长期服役(1000 h)后,涂层试片没有出现剥落和开裂的现象。

关键词 CB2钢无机硅酸盐涂层水蒸气氧化高温氧化    
Abstract

CB2 steel (ZG12Cr9Mo1Co1NiVNbNB) is a ferritic stainless steel with excellent creep properties at high temperature (550-700oC) and is mainly used in 600oC ultrasupercritical units. The poor oxidation resistance of the material limits its practical applications in harsh, high-temperature environments, in which the steam unit faces high-temperature water vapor for a long period of time. Therefore, surface modification or coating has become an important means to improve the high-temperature oxidation resistance of the material. An inorganic silicate coating has the advantages of high thermal-chemical stability, similar thermal expansion coefficient, and simple preparation process, which can significantly improve the oxidation and corrosion resistance of the material. In this study, a new type of inorganic silicate composite coating was designed, based on the CB2 steel. The oxidation behavior of CB2 steel and coated specimens at 650oC high-temperature steam atmosphere for 1000 h was studied by using a high-temperature water vapor simulation device. The results showed that the oxidation rate of the coated CB2 steel was 30 times slower than that of uncoated CB2 steel; thus, the coating exhibited a good protective effect. After 1000 h of oxidation, the oxide scale on the CB2 steel was loose and cracked with obvious voids and the oxidation product was mainly composed of Fe2O3. The inorganic silicate composite coating significantly improved the oxidation resistance of CB2 steel; after 1000 h of oxidation, no spallation areas or cracks were found.

Key wordsCB2 steel    inorganic potassium silicate coating    steam atmosphere oxidation    high-temperature oxidation
收稿日期: 2021-01-22     
ZTFLH:  TG178  
基金资助:国家自然科学基金项目(51671053);国家自然科学基金项目(51801021);工信部项目(MJ-2017-J-99)
作者简介: 丛鸿达,男,1996年生,硕士生
No.TypeChanges in color and state
1AlH2P3O10Unchanged
2ZnFrom grey to yellowish-white, the zinc powder sintering
3FEPLight red
4Al2O3Unchanged
5ZrO2Unchanged
6GlassUnchanged
7CCBUnchanged
8TiO2Unchanged
9SiCUnchanged
10KAl2(AlSi3O10)(OH)2Unchanged
表1  不同填料经650℃氧化后粉料颜色和状态的变化
No.Mass fraction ofMass fraction ofCuring reactionAppearanceWater resistance
potassium silicate / %AlH2P3O10 / %
11000Apparent curedFlat and smoothNo water resistance
2955Fully curedFlat and smoothWell
39010Fully curedFlat and smoothWell
48515Fully curedMore surface particlesWell
58020Fully curedMore surface particlesWell
表2  AlH2P3O10在硅酸钾中的固化表现
图1  高温水蒸气氧化实验模拟装置
图2  CB2钢与无机防护涂层在水蒸气650℃高温环境中的氧化动力学曲线
图3  CB2钢和无机防护涂层在水蒸气650℃高温环境中氧化1000 h后的XRD谱
图4  CB2钢与无机防护涂层在水蒸气650℃高温环境氧化500和1000 h后的表面微观形貌
图5  CB2钢与无机防护涂层在水蒸气650℃高温环境氧化500和1000 h后的截面微观形貌Color online
PositionFeCrOMn
124.720.7474.540
216.859.2573.180.73
322.470.1377.250.15
419.165.8274.610.41
表3  图5中1~4点EDS分析 (mass fraction / %)
1 Yang Y P, Xu C, Xu G, et al. A new conceptual cold-end design of boilers for coal-fired power plants with waste heat recovery [J]. Energy Convers. Manage., 2015, 89: 137
doi: 10.1016/j.enconman.2014.09.065
2 Yang Y P, Yang Z P, Xu G, et al. Situation and prospect of energy consumption for China's thermal power generation [J]. Proc. CSEE, 2013, 33(23): 1
2 杨勇平, 杨志平, 徐 钢 等. 中国火力发电能耗状况及展望 [J]. 中国电机工程学报, 2013, 33(23): 1
3 Tumanovskii A G, Shvarts A L, Somova E V, et al. Review of the coal-fired, over-supercritical and ultra-supercritical steam power plants [J]. Therm. Eng., 2017, 64: 83
doi: 10.1134/S0040601517020082
4 Wang J L, Zhang X D, Hou M J. Development and expectation of application of ultra-supercritical double-reheat steam turbines [J]. Therm. Power Gener., 2017, 46(8): 11
4 王建录, 张晓东, 侯明军. 超超临界二次再热机组汽轮机应用现状与展望 [J]. 热力发电, 2017, 46(8): 11
5 Lin F S, Xie X S, Zhao S Q, et al. Selection of superalloys for superheater tubes of domestic 700oC A-USC boilers [J]. J. Chin. Soc. Power Eng., 2011, 31: 960
5 林富生, 谢锡善, 赵双群 等. 我国700℃超超临界锅炉过热器管用高温合金选材探讨 [J]. 动力工程学报, 2011, 31: 960
6 Xiang B. Research on environmentally friendly and water-based architectural heat insulation coatings [D]. Guangzhou: South China University of Technology, 2012
6 向 波. 环保型水性建筑保温隔热涂料的研究 [D]. 广州: 华南理工大学, 2012
7 Xia Z G. Development of a new water-based metal anti-corrosion coating [D]. Yangzhou: Yangzhou University, 2013
7 夏中高. 新型水性金属防腐蚀涂料的研制 [D]. 扬州: 扬州大学, 2013
8 Xie D M, Hu J M, Tong S P, et al. The development of zinc-rich paints [J]. J. Chin. Soc. Corros. Prot., 2004, 24: 314
8 谢德明, 胡吉明, 童少平 等. 富锌漆研究进展 [J]. 中国腐蚀与防护学报, 2004, 24: 314
9 Wei X Y. Super corrosion retarding water borne inorgannic zinc-rich coatings [J]. Paint Coat. Ind., 2007, 37(5): 40
9 魏向阳. 新一代水性无机富锌涂料 [J]. 涂料工业, 2007, 37(5): 40
10 Tan X J, Wang W, Liu Y S, et al. The preparation of nano-inorganic composite coatings and its performance study [J]. Shandong Chem. Ind., 2018, 47(9): 22
10 谭向君, 王 维, 刘玉硕 等. 纳米-无机复合涂料的制备及其性能研究 [J]. 山东化工, 2018, 47(9): 22
11 Zhu W, Li W F, Mu S L, et al. Comparative study on Ti/Zr/V and chromate conversion treated aluminum alloys: Anti-corrosion performance and epoxy coating adhesion properties [J]. Appl. Surf. Sci., 2017, 405: 157
doi: 10.1016/j.apsusc.2017.02.046
12 Qomariyah L, Sasmita F N, Novaldi H R, et al. Preparation of stable colloidal silica with controlled size nano spheres from sodium silicate solution [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2018, 395: 012017
13 Tänzer R, Yu J, Stephan D. Alkali activated slag binder: Effect of cations from silicate activators [J]. Mater. Struct., 2017, 50: 90
doi: 10.1617/s11527-016-0962-x
14 Cheng L H, Luo Y, Ma S H, et al. Corrosion resistance of inorganic zinc-rich coating reinforced by Ni-coated coal fly ash [J]. J. Alloys Compd., 2019, 786: 791
doi: 10.1016/j.jallcom.2019.01.368
15 Peng G Y, Zhai J Q. Preparation of high SiO2/K2O ratio potassium silicate solution and its zinc-rich coatings [J]. Paint Coat. Ind., 2011, 41(8): 27
15 彭刚阳, 翟金清. 高模数硅酸钾溶液及其富锌涂料的制备 [J]. 涂料工业, 2011, 41(8): 27
16 Parashar G, Srivastava D, Kumar P. Ethyl silicate binders for high performance coatings [J]. Prog. Org. Coat., 2001, 42: 1
doi: 10.1016/S0300-9440(01)00128-X
17 Rui G. Water based high temperature resistant and antioxidation inorganic coatings [J]. Shanghai Coat., 2011, 49(4): 23
17 芮 龚. 水性耐高温抗氧化无机涂料 [J]. 上海涂料, 2011, 49(4): 23
18 Duan D F. Preparation of TiO2 NPs and its effect on the surface of the external wall coating [D]. Chongqing: Chongqing University, 2013
18 段东方. 纳米TiO2的制备及对外墙涂料表面改性研究 [D]. 重庆: 重庆大学, 2013
19 Qiu X, Tariq N U H, Wang J Q, et al. Microstructure, microhardness and tribological behavior of Al2O3 reinforced A380 aluminum alloy composite coatings prepared by cold spray technique [J]. Surf. Coat. Technol., 2018, 350: 391
doi: 10.1016/j.surfcoat.2018.07.039
20 He Y H, Li H B, Ou L G, et al. Preparation and characterisation of water-based aluminium pigments modified with SiO2 and polymer brushes [J]. Corros. Sci., 2016, 111: 802
doi: 10.1016/j.corsci.2016.06.014
21 Shao G F, Wang Q Q, Wu X D, et al. Evolution of microstructure and radiative property of metal silicide-glass hybrid coating for fibrous ZrO2 ceramic during high temperature oxidizing atmosphere [J]. Corros. Sci., 2017, 126: 78
doi: 10.1016/j.corsci.2017.06.017
22 Khan A, Huang Y, Dong Z, et al. Effect of Cr2O3 nanoparticle dispersions on oxidation kinetics and phase transformation of thermally grown alumina on a nickel aluminide coating [J]. Corros. Sci., 2019, 150: 91
doi: 10.1016/j.corsci.2019.01.032
23 Liu X T, Wang D D, Wu Y K, et al. Investigation on corrosion and wear resistance of MgO-Al2O3 composite coating prepared by plasma electrolytic oxidation [J]. Int. J. Appl. Ceram. Technol., 2020, 17: 1017
doi: 10.1111/ijac.13458
24 Liao Y M, Zhang B, Chen M H, et al. Self-healing metal-enamel composite coating and its protection for TiAl alloy against oxidation under thermal shock in NaCl solution [J]. Corros. Sci., 2020, 167: 108526
doi: 10.1016/j.corsci.2020.108526
25 Chen M H, Li W B, Shen M L, et al. Glass coatings on stainless steels for high-temperature oxidation protection: Mechanisms [J]. Corros. Sci., 2014, 82: 316
doi: 10.1016/j.corsci.2014.01.033
26 Yu Z D, Chen M H, Chen K, et al. Corrosion of enamel with and without CaF2 in molten aluminum at 750oC [J]. Corros. Sci., 2019, 148: 228.
doi: 10.1016/j.corsci.2018.12.016
27 Seybolt A U. Observations on the Fe-Cr-O system [J]. J. Electrochem. Soc., 1960, 107: 147
doi: 10.1149/1.2427643
28 Shen J N, Zhou L J, Li T F. High-temperature oxidation of Fe-Cr alloys in wet oxygen [J]. Oxid. Met., 1997, 48: 347
doi: 10.1007/BF01670507
29 Nagl M M, Evans W T. The mechanical failure of oxide scales under tensile or compressive load [J]. J. Mater. Sci., 1993, 28: 6247
doi: 10.1007/BF01352181
30 Gesmundo F, Hou P Y. Analysis of pore formation at oxide-alloy interfaces-Ⅱ: Theoretical treatment of vacancy condensation for immobile interfaces [J]. Oxid. Met., 2003, 59: 63
doi: 10.1023/A:1023065915321
31 Cotterell B, Chen Z. Buckling and cracking of thin films on compliant substrates under compression [J]. Int. J. Fract., 2000, 104: 169
doi: 10.1023/A:1007628800620
32 Wang J S, Evans A G. Effects of strain cycling on buckling, cracking and spalling of a thermally grown alumina on a nickel-based bond coat [J]. Acta Mater., 1999, 47: 699
doi: 10.1016/S1359-6454(98)00328-0
33 Li Y, Cheng X D, Cao W, et al. Fabrication of adiabatic foam at low temperature with sodium silicate as raw material [J]. Mater. Des., 2015, 88: 1008
doi: 10.1016/j.matdes.2015.09.078
34 Qu S S. Research on the preparation of high-temperature and temperature shock resistance potassium silicate coating [D]. Shenyang: Shenyang University of Technology, 2018
34 曲伸伸. 耐高温抗热震硅酸钾涂层制备技术研究 [D]. 沈阳: 沈阳工业大学, 2018
35 Francisco J S, Capelossi V R, Aoki I V. Evaluation of a sulfursilane anticorrosive pretreatment on galvannealed steel compared to phosphate under a waterborne epoxy coating [J]. Electrochim. Acta, 2014, 124: 128
doi: 10.1016/j.electacta.2013.09.144
36 Yang C F, Smyrl W H, Cussler E L. Flake alignment in composite coatings [J]. J. Membr. Sci., 2004, 231: 1
doi: 10.1016/j.memsci.2003.09.022
37 Liu H W, Xu G, Song G L, et al. An EIS investigation of the mechanism of aluminum polyphosphate as anti-rust pigment [J]. J. Chin. Soc. Corros. Rrot., 1997, 17: 215
37 刘宏伟, 许 刚, 宋光铃 等. 防锈颜料三聚磷酸铝作用机理的EIS研究 [J]. 中国腐蚀与防护学报, 1997, 17: 215
38 Xie M L, Luo D L, Xian X B, et al. Effect of alumina on the properties of ultra-high pressure sintered silicon carbide [J]. J. Chin. Ceram. Soc., 2008, 36: 1144
38 谢茂林, 罗德礼, 鲜晓斌 等. 氧化铝添加量对超高压烧结碳化硅性能的影响 [J]. 硅酸盐学报, 2008, 36: 1144
39 Sun Y X, Wang Y Z, He Y L. Effects of RE oxides on plasma sprayed Al2O3 coatings [J]. Mater. Prot., 2001, 34(6): 8
39 孙永兴, 王引真, 何艳玲. 稀土氧化物添加剂对Al2O3等离子喷涂层的影响 [J]. 材料保护, 2001, 34(6): 8
40 Sadeghimeresht E, Eklund J, Simon J P, et al. Effect of water vapor on the oxidation behavior of HVAF-sprayed NiCr and NiCrAlY coatings [J]. Mater. Corros., 2018, 69: 1431
41 Ostwald C, Grabke H J. Initial oxidation and chromium diffusion. I. Effects of surface working on 9-20% Cr steels [J]. Corros. Sci., 2004, 46: 1113
doi: 10.1016/j.corsci.2003.09.004
42 Huang X X, Li J S, Hu R, et al. Evolution of oxidation in Ni-Cr-W alloy at 1100oC [J]. Rare Met. Mater. Eng., 2010, 39: 1908
doi: 10.1016/S1875-5372(10)60136-1
43 Greeff A P, Louw C W, Swart H C. The oxidation of industrial FeCrMo steel [J]. Corros. Sci., 2000, 42: 1725
doi: 10.1016/S0010-938X(00)00026-3
44 Xue R J, Wu Y C. Mechanism of modification of silane coupling agents and properties of modified sericite [J]. J. Chin. Ceram. Soc., 2007, 35: 373
44 薛茹君, 吴玉程. 硅烷偶联剂修饰改性的机理及改性绢云母的性能 [J]. 硅酸盐学报, 2007, 35: 373
[1] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[2] 徐文国, 郝文江, 李应举, 赵庆彬, 卢炳聿, 郭和一, 刘天宇, 冯小辉, 杨院生. 微量AlTiInconel 690合金高温氧化行为的影响[J]. 金属学报, 2023, 59(12): 1547-1558.
[3] 解磊鹏, 孙文瑶, 陈明辉, 王金龙, 王福会. 制备工艺对FGH4097高温合金微观组织与性能的影响[J]. 金属学报, 2022, 58(8): 992-1002.
[4] 杨亮, 吕皓天, 万春磊, 巩前明, 陈浩, 张弛, 杨志刚. 综述:活性元素作用机理——氧化物“钉扎”模型[J]. 金属学报, 2021, 57(2): 182-190.
[5] 赵明雨,甄会娟,董志宏,杨秀英,彭晓. 新型耐磨耐高温氧化NiCrAlSiC复合涂层的制备及性能研究[J]. 金属学报, 2019, 55(7): 902-910.
[6] 高博, 王磊, 宋秀, 刘杨, 杨舒宇, 千叶晶彦. 预氧化对Co-Al-W基高温合金高温氧化和热腐蚀行为的影响[J]. 金属学报, 2019, 55(10): 1273-1281.
[7] 白银, 刘正东, 谢建新, 包汉生, 陈正宗. 预氧化处理对G115钢高温蒸气氧化行为的影响[J]. 金属学报, 2018, 54(6): 895-904.
[8] 曾宇翔,郭喜平,乔彦强,聂仲毅. Zr含量对Nb-Ti-Si基超高温合金组织及抗氧化性能的影响[J]. 金属学报, 2015, 51(9): 1049-1058.
[9] 骆蕾,沈以赴,李博, 胡伟叶. 搅拌摩擦焊搭接法制备TC4钛合金表面Al涂层及其高温氧化行为[J]. 金属学报, 2013, 49(8): 996-1002.
[10] 于大千,卢旭阳,马军,姜肃猛,刘山川,宫骏,孙超. 梯度NiCrAlY涂层的1000和1100 ℃氧化行为研究[J]. 金属学报, 2012, 48(6): 759-768.
[11] 肖旋 许辉 秦学智 郭永安 郭建亭 周兰章. 3种铸造镍基高温合金热疲劳行为研究[J]. 金属学报, 2011, 47(9): 1129-1134.
[12] 邱军 赵文金 Thomas Guilbert Jean-Luc Bechade. 3种锆合金的高温氧化行为[J]. 金属学报, 2011, 47(9): 1216-1220.
[13] 宋鹏 陆建生 张德丰 吕建国 李德江. La和Hf对CoNiCrAl合金涂层高温氧化行为的影响[J]. 金属学报, 2011, 47(6): 655-662.
[14] 徐朝政 姜肃猛 马军 宫骏 孙超. 两种电弧离子镀Ni-Co-Cr-Al-Si-Y涂层的高温氧化行为[J]. 金属学报, 2009, 45(8): 964-970.
[15] 彭新 姜肃猛 段绪海 宫骏 孙超. (MCrAlY+AlSiY)复合涂层的高温氧化行为[J]. 金属学报, 2009, 45(3): 378-384.