Please wait a minute...
金属学报  2023, Vol. 59 Issue (5): 668-678    DOI: 10.11900/0412.1961.2022.00183
  本期目录 | 过刊浏览 |
基体表面喷丸处理对纳米晶涂层循环氧化行为的影响
黄鼎1, 乔岩欣1(), 杨兰兰1, 王金龙2, 陈明辉2, 朱圣龙3, 王福会2
1江苏科技大学 材料科学与工程学院 镇江 212003
2东北大学 沈阳材料科学国家研究中心东北大学联合研究分部 沈阳 110819
3中国科学院金属研究所 沈阳 110016
Effect of Shot Peening of Substrate Surface on Cyclic Oxidation Behavior of Sputtered Nanocrystalline Coating
HUANG Ding1, QIAO Yanxin1(), YANG Lanlan1, WANG Jinlong2, CHEN Minghui2, ZHU Shenglong3, WANG Fuhui2
1School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
2Shenyang National Key Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
3Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

黄鼎, 乔岩欣, 杨兰兰, 王金龙, 陈明辉, 朱圣龙, 王福会. 基体表面喷丸处理对纳米晶涂层循环氧化行为的影响[J]. 金属学报, 2023, 59(5): 668-678.
Ding HUANG, Yanxin QIAO, Lanlan YANG, Jinlong WANG, Minghui CHEN, Shenglong ZHU, Fuhui WANG. Effect of Shot Peening of Substrate Surface on Cyclic Oxidation Behavior of Sputtered Nanocrystalline Coating[J]. Acta Metall Sin, 2023, 59(5): 668-678.

全文: PDF(3093 KB)   HTML
摘要: 

采用磁控溅射技术分别在抛光和喷丸处理后的镍基单晶高温合金基体上制备纳米晶涂层,并研究了2种涂层在1100℃下的循环氧化行为。采用XRD、SEM和EDS表征涂层的物相组成和微观形貌。结果表明,1100℃下2种纳米晶涂层的循环氧化增重趋势基本一致,均能在表面形成致密的氧化膜,展现出优异的抗氧化性能。2种纳米晶涂层与基体的界面及界面附近区域的微观形貌演变有所差异,随着氧化实验的进行,在抛光基体/涂层界面处涂层一侧观察到γ'相的持续形成;在喷丸基体/涂层界面处涂层一侧未发现此现象,而在基体一侧观察到γ'相不断长大。

关键词 喷丸处理纳米晶涂层循环氧化磁控溅射    
Abstract

In addition to changing the surface roughness of the superalloy, the substrate surface treatment can also modify the microstructure of the surface, which affects the high-temperature oxidation behavior of the high-temperature protective coating. However, there are few reports about the effect of superalloy surface treatment on the oxidation behavior of nanocrystalline coatings. In this work, nanocrystalline coatings were sputtered on the nickel-based single crystal superalloy after two different surface treatments of polishing and shot peening, and their cyclic oxidation behavior at 1100oC was investigated. The phase composition and microstructure of nanocrystalline coatings were characterized by SEM, XRD, and EDS. The results indicated that the cyclic oxidation kinetics of both nanocrystalline coatings at 1100oC were similar. A dense oxide film could be formed on the surface of nanocrystalline coatings, showing excellent oxidation resistance. However, the microstructure evolution of the interface between the nanocrystalline coating and shot-peened superalloy substrate differed from that between the nanocrystalline coating and polished superalloy substrate. The sustained formation of the γ′ phase in the nanocrystalline coating near the polished substrate/coating interface was observed during high-temperature oxidation. This phenomenon was not found at the nanocrystalline coating near the shot peened substrate/coating interface, while the continuous growth of the γ' phase was observed at the substrate.

Key wordsshot peening    nanocrystalline coating    cyclic oxidation    magnetron sputtering
收稿日期: 2022-04-19     
ZTFLH:  TG172  
基金资助:国家自然科学基金项目(51801021);国家自然科学基金项目(52001142);工业和信息技术部项目(MJ-2017-J-99);教育部中央高效基本科研业务费项目(N2102015)
作者简介: 黄 鼎,男,1996年生,硕士生
图1  沉积在抛光和喷丸N5单晶高温合金表面上的纳米晶涂层的截面和表面形貌
图2  纳米晶涂层1100℃循环氧化动力学曲线和单位面积的质量增重(ΔM)与氧化时间(t)的拟合曲线
图3  1100℃下纳米晶涂层在不同循环次数后的XRD谱
图4  沉积在抛光和喷丸高温合金表面上的纳米晶涂层在1100℃下100 cyc后的截面和表面形貌
图5  1100℃下氧化0、5、20和100 cyc后抛光高温合金基体/纳米晶涂层界面微观组织及沿虚线的EDS线扫描结果
图6  1100℃下氧化0、5、20和100 cyc后喷丸高温合金基体/纳米晶涂层界面微观组织及沿虚线的EDS线扫描结果
PointAlCrCoMoTaWNi
16.73.65.31.012.26.0Bal.
24.010.49.72.73.97.0Bal.
37.03.05.00.712.95.7Bal.
44.010.310.02.24.26.9Bal.
表1  图5d和6d中点1~4的EDS结果 (mass fraction / %)
图7  沉积在抛光和喷丸高温合金表面上的纳米晶涂层在1100℃下20和100 cyc后的截面微观组织
SuperalloyCycle number / cycZonePointContent
Atomic fraction / %Mass fraction / %
Polishing20γ + γ'19.04.1
γ29.64.3
100γ + γ'39.04.0
γ49.84.4
Shot peening20γ + γ'58.94.0
γ69.04.0
100γ + γ'78.94.0
γ89.04.0
表2  图7点1~8处Al元素的EDS结果
1 Clarke D R, Oechsner M, Padture N P. Thermal-barrier coatings for more efficient gas-turbine engines[J]. MRS Bull., 2012, 37: 891
2 Darolia R. Thermal barrier coatings technology: Critical review, progress update, remaining challenges and prospects[J]. Int. Mater. Rev, 2013, 58: 315
doi: 10.1179/1743280413Y.0000000019
3 Long H B, Wei H, Liu Y N, et al. Effect of lattice misfit on the evolution of the dislocation structure in Ni-based single crystal superalloys during thermal exposure[J]. Acta Mater., 2016, 120: 95
doi: 10.1016/j.actamat.2016.08.035
4 Spathara D, Sergeev D, Kobertz D, et al. Thermodynamic study of single crystal, Ni-based superalloys in the γ + γ′ two-phase region using Knudsen Effusion Mass Spectrometry, DSC and SEM[J]. J. Alloys Compd., 2021, 870: 159295
doi: 10.1016/j.jallcom.2021.159295
5 Rae C M F, Hook M S, Reed R C. The effect of TCP morphology on the development of aluminide coated superalloys[J]. Mater. Sci. Eng., 2005, A396: 231
6 Pint B A, Haynes J A, Besmann T M. Effect of Hf and Y alloy additions on aluminide coating performance[J]. Surf. Coat. Technol., 2010, 204: 3287
doi: 10.1016/j.surfcoat.2010.03.040
7 Pillai R, Wessel E, Nowak W J, et al. Predicting effect of base alloy composition on oxidation- and interdiffusion-induced degradation of an MCrAlY coating[J]. JOM, 2018, 70: 1520
doi: 10.1007/s11837-018-2950-9
8 Song P, Subanovic M, Toscano J, et al. Effect of atmosphere composition on the oxidation behavior of MCrAlY coatings[J]. Mater. Corros., 2011, 62: 699
doi: 10.1002/maco.201005851
9 Hesnawi A, Li H F, Zhou Z H, et al. Effect of surface condition during pre-oxidation treatment on isothermal oxidation behavior of MCrAlY bond coat prepared by EB-PVD[J]. Surf. Coat. Technol., 2007, 201: 6793
doi: 10.1016/j.surfcoat.2006.09.076
10 Wu M Y, Chen M H, Zhu S L, et al. Effect of sand blasting on oxidation behavior of K38G superalloy at 1000oC[J]. Corros. Sci., 2015, 92: 256
doi: 10.1016/j.corsci.2014.12.015
11 Ostwald C, Grabke H J. Initial oxidation and chromium diffusion. I. Effects of surface working on 9-20% Cr steels[J]. Corros. Sci., 2004, 46: 1113
doi: 10.1016/j.corsci.2003.09.004
12 Kawaura H, Kawahara H, Nishino K, et al. New surface treatment using shot blast for improving oxidation resistance of TiAl-base alloys[J]. Mater. Sci. Eng., 2002, A329-331: 589
13 Wang H, Liu Y B, Ning X J, et al. Oxidation of Ni-based single crystal after grit-blasting during exposure at high temperature[J]. Mater. High Temp., 2017, 34: 215
doi: 10.1080/09603409.2017.1281869
14 Karaoglanli A C, Doleker K M, Demirel B, et al. Effect of shot peening on the oxidation behavior of thermal barrier coatings[J]. Appl. Surf. Sci., 2015, 354: 314
doi: 10.1016/j.apsusc.2015.06.113
15 Tan L, Ren X, Sridharan K, et al. Effect of shot-peening on the oxidation of alloy 800H exposed to supercritical water and cyclic oxidation[J]. Corros. Sci., 2008, 50: 2040
doi: 10.1016/j.corsci.2008.04.008
16 Ni L Y, Wu Z L, Zhou C G. Effects of surface modification on isothermal oxidation behavior of HVOF-sprayed NiCrAlY coatings[J]. Prog. Nat. Sci.: Mater. Int., 2011, 21: 173
doi: 10.1016/S1002-0071(12)60052-5
17 Kane K A, Lance M J, Sweet M, et al. The effect of bond coating surface modification on the performance of atmospheric plasma spray thermal barrier coatings[J]. Surf. Coat. Technol., 2019, 378: 125042
doi: 10.1016/j.surfcoat.2019.125042
18 Li Z M, Qian S Q, Wang W. Influence of superalloy substrate roughness on adhesion and oxidation behavior of magnetron-sputtered NiCoCrAlY coatings[J]. Appl. Surf. Sci., 2011, 257: 10414
doi: 10.1016/j.apsusc.2011.06.120
19 Wang L, Jiang W G, Li X W, et al. Effect of surface roughness on the oxidation behavior of a directionally solidified Ni-based superalloy at 1100oC[J]. Acta. Metall. Sin. (Engl. Lett.), 2015, 28: 381
doi: 10.1007/s40195-015-0211-2
20 Gil A, Shemet V, Vassen R, et al. Effect of surface condition on the oxidation behaviour of MCrAlY coatings[J]. Surf. Coat. Technol., 2006, 201: 3824
doi: 10.1016/j.surfcoat.2006.07.252
21 Wang J L, Chen M H, Yang L L, et al. Nanocrystalline coatings on superalloys against high temperature oxidation: A review[J]. Corros. Commun., 2021, 1: 58
22 Zhao S, Liu C H, Yang J J, et al. Mechanical and high-temperature corrosion properties of AlTiCrNiTa high entropy alloy coating prepared by magnetron sputtering for accident-tolerant fuel cladding[J]. Surf. Coat. Technol., 2021, 417: 127228
doi: 10.1016/j.surfcoat.2021.127228
23 Li Z, Liu C H, Chen Q S, et al. Microstructure, high-temperature corrosion and steam oxidation properties of Cr/CrN multilayer coatings prepared by magnetron sputtering[J]. Corros. Sci., 2021, 191: 109755
doi: 10.1016/j.corsci.2021.109755
24 Wang J L, Chen M H, Yang L L, et al. Comparative study of oxidation and interdiffusion behavior of AIP NiCrAlY and sputtered nanocrystalline coatings on a nickel-based single-crystal superalloy[J]. Corros. Sci., 2015, 98: 530
doi: 10.1016/j.corsci.2015.05.062
25 Yeom H, Maier B, Mariani R, et al. Magnetron sputter deposition of zirconium-silicide coating for mitigating high temperature oxidation of zirconium-alloy[J]. Surf. Coat. Technol., 2017, 316: 30
doi: 10.1016/j.surfcoat.2017.03.018
26 Yang L L, Zhou Z H, Yang R Z, et al. Effect of Al and Cr on the oxidation behavior of nanocrystalline coatings at 1050oC[J]. Corros. Sci., 2022, 200: 110191
doi: 10.1016/j.corsci.2022.110191
27 Yang L L, Chen M H, Cheng Y X, et al. Effects of surface finish of single crystal superalloy substrate on cyclic thermal oxidation of its nanocrystalline coating[J]. Corros. Sci., 2016, 111: 313
doi: 10.1016/j.corsci.2016.04.023
28 Chen M H, Shen M L, Zhu S L, et al. Effect of sand blasting and glass matrix composite coating on oxidation resistance of a nickel-based superalloy at 1000oC[J]. Corros. Sci., 2013, 73: 331
doi: 10.1016/j.corsci.2013.04.022
29 Wang J L, Chen M H, Yang L L, et al. The effect of yttrium addition on oxidation of a sputtered nanocrystalline coating with moderate amount of tantalum in composition[J]. Appl. Surf. Sci., 2016, 366: 245
doi: 10.1016/j.apsusc.2016.01.088
30 Yoon K E, Isheim D, Noebe R D, et al. Nanoscale studies of the chemistry of a René N6 superalloy[J]. Interf. Sci., 2001, 9: 249
doi: 10.1023/A:1015158728191
31 Zietara M, Neumeier S, Göken M, et al. Characterization of γ and γ′ phases in 2nd and 4th generation single crystal nickel-base superalloys[J]. Met. Mater. Int., 2017, 23: 126
doi: 10.1007/s12540-017-6109-y
32 Wagner C. Theoretical analysis of the diffusion processes determining the oxidation rate of alloys[J]. J. Electrochem. Soc., 1952, 99: 369
doi: 10.1149/1.2779605
33 Picha R, Brož P, Buršı́k J. Phase equilibria in the Ni-Al-Cr-Ti system at 1000 and 1100oC[J]. J. Alloys Compd., 2004, 378: 75
doi: 10.1016/j.jallcom.2003.10.072
34 Yang L L, Wang J L, Yang R Z, et al. Oxidation behavior of a nanocrystalline coating with low Ta content at high temperature[J]. Corros. Sci, 2021, 180: 109182
doi: 10.1016/j.corsci.2020.109182
35 Warren P J, Cerezo A, Smith G D W. An atom probe study of the distribution of rhenium in a nickel-based superalloy[J]. Mater. Sci. Eng., 1998, A250: 88
36 He C, Liu L, Huang T W, et al. The effects of misfit and diffusivity on γʹ rafting in Re and Ru containing nickel based single crystal superalloys—Details in thermodynamics and dynamics[J]. Vacuum, 2021, 183: 109839
doi: 10.1016/j.vacuum.2020.109839
37 Buchanan D J, John R, Brockman R A. Relaxation of shot-peened residual stresses under creep loading[J]. J. Eng. Mater. Technol., 2009, 131: 031008
38 Mathur H N, Panwisawas C, Jones C N, et al. Nucleation of recrystallisation in castings of single crystal Ni-based superalloys[J]. Acta Mater., 2017, 129: 112
doi: 10.1016/j.actamat.2017.02.058
39 Durham R N, Gleeson B, Young D J. Factors affecting chromium carbide precipitate dissolution during alloy oxidation[J]. Oxid. Met., 1998, 50: 139
doi: 10.1023/A:1018880019395
[1] 曹庆平, 吕林波, 王晓东, 蒋建中. 物理气相沉积制备金属玻璃薄膜及其力学性能的样品尺寸效应[J]. 金属学报, 2021, 57(4): 473-490.
[2] 刘艳梅, 王铁钢, 郭玉垚, 柯培玲, 蒙德强, 张纪福. Ti-B-N纳米复合涂层的设计、制备及性能[J]. 金属学报, 2020, 56(11): 1521-1529.
[3] 李文涛,王振玉,张栋,潘建国,柯培玲,汪爱英. 电弧复合磁控溅射结合热退火制备Ti2AlC涂层[J]. 金属学报, 2019, 55(5): 647-656.
[4] 吴厚朴,田修波,张新宇,巩春志. 双脉冲HiPIMS放电特性及CrN薄膜高速率沉积[J]. 金属学报, 2019, 55(3): 299-307.
[5] 杨莎莎,杨峰,陈明辉,牛云松,朱圣龙,王福会. N掺杂对磁控溅射Ta涂层微观结构与耐磨损性能的影响[J]. 金属学报, 2019, 55(3): 308-316.
[6] 时惠英, 杨超, 蒋百灵, 黄蓓, 王迪. 双脉冲磁控溅射峰值靶电流密度对TiN薄膜结构与力学性能的影响[J]. 金属学报, 2018, 54(6): 927-934.
[7] 隋旭东,李国建,王强,秦学思,周向葵,王凯,左立建. 钛合金切削用Ti1-xAlxN涂层的制备及其切削性能研究*[J]. 金属学报, 2016, 52(6): 741-746.
[8] 楼白杨,王宇星. Mo含量对CrMoAlN薄膜微观结构和摩擦磨损性能的影响*[J]. 金属学报, 2016, 52(6): 727-733.
[9] 彭新, 姜肃猛, 孙旭东, 宫骏, 孙超. 梯度NiCoCrAlYSi涂层的循环氧化及热腐蚀行为*[J]. 金属学报, 2016, 52(5): 625-631.
[10] 吴法宇,李建伟,齐羿,丁梧桐,樊子铭,周艳文. 粉末靶射频磁控溅射非晶Al2O3薄膜的制备与性能研究*[J]. 金属学报, 2016, 52(12): 1595-1600.
[11] 齐东丽, 雷浩, 范迪, 裴志亮, 宫骏, 孙超. Mo含量对CrMoN复合涂层的组织结构和性能的影响[J]. 金属学报, 2015, 51(3): 371-377.
[12] 崔文芳,曹栋,秦高梧. 磁控溅射沉积Ti/TiN多层膜的组织特征及耐磨损性能*[J]. 金属学报, 2015, 51(12): 1531-1537.
[13] 杨超,蒋百灵,冯林,郝娟. 靶面放电特性对沉积粒子离化率及沉积行为的影响*[J]. 金属学报, 2015, 51(12): 1523-1530.
[14] 马玉田,刘俊标,霍荣岭,韩立,牛耕. 基于磁控溅射法显微CT W-Al透射靶材的制备及其性能研究*[J]. 金属学报, 2015, 51(11): 1416-1424.
[15] 马玉田,刘俊标,霍荣岭,韩立,牛耕. 基于磁控溅射法显微CT W-Al透射靶材的制备及其性能研究*[J]. 金属学报, 2015, 51(11): 1416-1424.