Please wait a minute...
金属学报  2013, Vol. 29 Issue (4): 464-474    DOI: 10.3724/SP.J.1037.2012.00654
  论文 本期目录 | 过刊浏览 |
一种快速凝固粉末冶金高温钛合金微观组织特征研究
李少强1,2),陈志勇1),王志宏3),刘建荣1),王清江1),杨锐1)
1) 中国科学院金属研究所, 沈阳 110016
2) 西部超导材料科技股份有限公司, 西安 710018
3) 中航工业沈阳发动机设计研究所, 沈阳 110000
MICROSTRUCTURE STUDY OF A RAPID SOLIDIFICATION POWDER METALLURGY HIGH TEMPERATURE TITANIUM ALLOY
LI Shaoqiang1,2), CHEN Zhiyong1), WANG Zhihong3), LIU Jianrong1), WANG Qingjiang1), YANG Rui1)
1) Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2) Western Superconducting Technologies Co. Ltd., Xi'an 710018
3) AVIC Shenyang Engine Design & Research Inistitute, Shenyang 110000  
全文: PDF(10271 KB)  
摘要: 

研究了一种快速凝固粉末冶金高温钛合金的微观组织及其影响因素. 结果表明: 热等静压 (HIP)成形温度可以显著地改变钛合金粉末的显微组织, 当HIP成形温度为700 ℃时, 粉末中的α'马氏体相开始微量分解,900 ℃时大量分解, 分解产物为等轴/板条α相和晶界β. α+β两相区HIP成形后的显微组织主要由等轴α相、板条α相和β相组成, 随着温度升高, 等轴相略有长大, 板条α相的长宽比显著降低; β单相区HIP成形后的显微组织为片层组织, 主要由粗大的片层α相和沿原始β晶界分布的晶间α相组成. 粉末粒度越小, HIP成形后的显微组织越细小. α+β两相区HIP成形并在α+β两相区进行热处理后的显微组织主要是由等轴α相和β转变组织组成的双态组织; β单相区HIP成形并在α+β两相区进行热处理后的显微组织是由等轴α相、板条α相和β转变组织组成的三态组织; α+β两相区或者β单相区HIP成形并在β单相区进行热处理后的显微组织均为较细的网篮组织. 稀土Nd含量增加, 显微组织的组成没有发生变化, 但基体中弥散析出的稀土相数量增加, 原始β晶粒尺寸明显减小.

关键词 快速凝固粉末冶金高温钛合金热等静压微观组织    
Abstract

The high temperature titanium alloy with rare earth element Nd addition was prepared by rapidly solidified powder metallurgy (RS-PM) processing. The microstructure of RS-PM high temperature titanium alloy has been investigated systemically. Microstructure study showed that the α' martensite phase in the RS powders initially decomposed at 700 ℃ and vastly at 900 ℃during the hot isostatic pressing (HIP) process. The decomposition products were equiaxed or lamellar α phase as well as grain boundary β phase. The microstructure of the specimen HIPed at the temperature in (α+β) phase field contained equiaxed α phase, lamellar α phase and β phase. The size of equiaxed α phase increased while the aspect ratio of the lamellar α phase decreased when the HIP temperature increased. The microstructure of the specimen HIPed at the temperature in β phase field contained coarsed lamellar α phase, grain boundary α phase and β phase. The microstructure became finer with decreasing the powder particle size. The microstructure of the sample HIPed in the (α+β) phase field and then heat treated in the (α+β) phase field was bi-modal microstructure containing equiaxed α phase and β transformed structure. The microstructure of the sample HIPed in the β phase field and then heat treated in the (α+β) phase field was ternary microstructure containing equiaxed α phase, lamellar α phase and β transformed structure. The microstructure of the sample HIPed in the (α+β) phase field or β phase field and then heat treated in the β phase field was basket-weave structure. The proportion of rich-Nd phases increased with increasing the Nd content,resulting in the reduction of original β grain size.

Key wordsrapid solidification    powder metallurgy    high temperature titanium alloy    hot isostatic pressing    microstructure
收稿日期: 2012-11-01     
通讯作者: 王清江     E-mail: qjwang@imr.ac.cn
作者简介: 李少强, 男, 1979年生, 博士生

引用本文:

李少强,陈志勇,王志宏,刘建荣,王清江,杨锐. 一种快速凝固粉末冶金高温钛合金微观组织特征研究[J]. 金属学报, 2013, 29(4): 464-474.
. MICROSTRUCTURE STUDY OF A RAPID SOLIDIFICATION POWDER METALLURGY HIGH TEMPERATURE TITANIUM ALLOY. Acta Metall Sin, 2013, 29(4): 464-474.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2012.00654      或      https://www.ams.org.cn/CN/Y2013/V29/I4/464

[1] Li G P.  PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 1995


(李阁平. 中国科学院金属研究所博士学位论文, 沈阳, 1995)

[2] Chen Z Y.  PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2008

(陈志勇. 中国科学院金属研究所博士学位论文, 沈阳, 2008)

[3] Xu F.  PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2007

(徐锋.中国科学院金属研究所博士学位论文, 沈阳, 2007)

[4] Zhao L.  Master Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2008

(赵亮. 中国科学院金属研究所硕士学位论文, 沈阳, 2008)

[5] Xu F, Li G P, Yang R.  Acta Metall Sin, 2006; 42: 770

(徐锋, 李阁平, 杨锐. 金属学报, 2006; 42: 770)

[6] Germain L, Gey N, Humbert M, Hazotte A, Bocher P, Jahazi M.  Mater Charact, 2005; 54: 216

[7] Wanjara P, Jahazi M, Monajati H, Yue S.  Mater Sci Eng, 2006; A416: 300

[8] Madsen A, Ghonem H.  Mater Sci Eng, 1994; A177: 63

[9] Weinem D, Kumpert J, Peters M, Kaysser W A.  Mater Sci Eng, 1996; A206: 55

[10] Hagiwara M, Emura S.  Mater Sci Eng, 2003; A352: 85

[11] Madsen A, Ghonem H.  J Mater Eng Perform, 1995; 4: 301

[12] Cui W F, Liu C M, Zhou L, Luo G Z.  Mater Sci Eng, 2002; A323: 192

[13] Lee D H, Nam S W, Choe S J.  Scr Mater, 1999; 40: 265

[14] Kumar A, Singh N, Singh V.  Mater Charact, 2003; 51: 225

[15] Wanjara P, Jahazi M, Monajati H, Yue S.  Mater Sci Eng, 2006; A416: 300

[16] Srinadh K V S, Singh N, Singh V.  Bull Mater Sci, 2007; 30: 595

[17] Smith C H.  Mater Sci Eng, 1987; 89: 103

[18] Froes F H, Eylon D, Rowe R G, Yolton C F.  Bull Mater Sci, 1989; 12: 293

[19] Konitzer D G, Stanley J T, Loretto M H, Fraser H L.  Acta Mater, 1986; 34: 1269

[20] Broderick T F, Jackson A G, Jones H, Froes F H.  Metall Mater Trans, 1985; 16A : 1951

[21] Lu Y Z, Giessen B C, Whang S H.  Mater Res Soc Symp Proc, 1986; 58: 377

[22] Whang S H, Lu Y Z, Kim Y W.  J Mater Sci Lett, 1985; 4: 883

[23] Jones H, Joshi A, Rowe R G, Froes F H.  Int J Powder Metall, 1987; 23: 13

[24] Suryanarayana C, Froes F H, Rowe R G.  Int Mater Rev, 1991; 36(3): 85

[25] Habel U, Mctiernan B J.  Intermetallics, 2004; 12: 63

[26] Lograsso B K, Koss D A.  Metall Trans, 1988; 19A: 1767

[27] Delo D P, Piehler H R.  Acta Mater, 1999; 47: 2841

[28] Delo D P, Dutton R E, Semiatin S L, Piehler H R.  Acta Mater, 1999; 47: 3159
[1] 刘震鹏, 闫志巧, 陈峰, 王顺成, 龙莹, 吴益雄. 金刚石工具用Cu-10Sn-xNi合金的制备和性能表征[J]. 金属学报, 2020, 56(5): 760-768.
[2] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[3] 马晋遥,王晋,赵云松,张剑,张跃飞,李吉学,张泽. 一种第二代镍基单晶高温合金1150 ℃原位拉伸断裂机制研究[J]. 金属学报, 2019, 55(8): 987-996.
[4] 卢正冠,吴杰,徐磊,崔潇潇,杨锐. Ti2AlNb异形粉末环件的轧制成形与性能研究[J]. 金属学报, 2019, 55(6): 729-740.
[5] 刘耀鸿,王朝辉,刘轲,李淑波,杜文博. Er对Mg-5Zn-xEr镁合金热裂敏感性的影响[J]. 金属学报, 2019, 55(3): 389-398.
[6] 邵成伟, 惠卫军, 张永健, 赵晓丽, 翁宇庆. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能[J]. 金属学报, 2019, 55(2): 191-201.
[7] 覃嘉宇, 李小强, 金培鹏, 王金辉, 朱云鹏. 碳纳米管(CNTs)增强AZ91镁基复合材料组织与力学性能研究[J]. 金属学报, 2019, 55(12): 1537-1543.
[8] 马国楠, 王东, 刘振宇, 毕胜, 昝宇宁, 肖伯律, 马宗义. 热压烧结温度对SiC/Al-Zn-Mg-Cu复合材料微观结构与力学性能的影响[J]. 金属学报, 2019, 55(10): 1319-1328.
[9] 姚彦桃, 陈礼清, 王文广. 原位反应浸渗法制备(B4C+Ti)混杂增强Mg及AZ91D复合材料及其阻尼性能[J]. 金属学报, 2019, 55(1): 141-148.
[10] 赵晓丽, 张永健, 邵成伟, 惠卫军, 董瀚. 两相区退火处理冷轧0.1C-5Mn中锰钢的氢脆敏感性[J]. 金属学报, 2018, 54(7): 1031-1041.
[11] 吴国华, 陈玉狮, 丁文江. 高性能镁合金凝固组织控制研究现状与展望[J]. 金属学报, 2018, 54(5): 637-646.
[12] 李金富, 周尧和. 液态金属深过冷快速凝固过程中初生固相的重熔[J]. 金属学报, 2018, 54(5): 627-636.
[13] 康慧君, 李金玲, 王同敏, 郭景杰. 定向凝固Al-Mn-Be合金初生金属间化合物相生长行为及力学性能[J]. 金属学报, 2018, 54(5): 809-823.
[14] 翟斌, 周凯, 吕鹏, 王海鹏. 自由落体条件下Ti-6Al-4V合金微液滴的快速凝固研究[J]. 金属学报, 2018, 54(5): 824-830.
[15] 马歌, 左秀荣, 洪良, 姬颖伦, 董俊媛, 王慧慧. 深海用X70管线钢焊接接头腐蚀行为研究[J]. 金属学报, 2018, 54(4): 527-536.