Please wait a minute...
金属学报  2013, Vol. 29 Issue (4): 464-474    DOI: 10.3724/SP.J.1037.2012.00654
  论文 本期目录 | 过刊浏览 |
一种快速凝固粉末冶金高温钛合金微观组织特征研究
李少强1,2),陈志勇1),王志宏3),刘建荣1),王清江1),杨锐1)
1) 中国科学院金属研究所, 沈阳 110016
2) 西部超导材料科技股份有限公司, 西安 710018
3) 中航工业沈阳发动机设计研究所, 沈阳 110000
MICROSTRUCTURE STUDY OF A RAPID SOLIDIFICATION POWDER METALLURGY HIGH TEMPERATURE TITANIUM ALLOY
LI Shaoqiang1,2), CHEN Zhiyong1), WANG Zhihong3), LIU Jianrong1), WANG Qingjiang1), YANG Rui1)
1) Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2) Western Superconducting Technologies Co. Ltd., Xi'an 710018
3) AVIC Shenyang Engine Design & Research Inistitute, Shenyang 110000  
引用本文:

李少强,陈志勇,王志宏,刘建荣,王清江,杨锐. 一种快速凝固粉末冶金高温钛合金微观组织特征研究[J]. 金属学报, 2013, 29(4): 464-474.
. MICROSTRUCTURE STUDY OF A RAPID SOLIDIFICATION POWDER METALLURGY HIGH TEMPERATURE TITANIUM ALLOY[J]. Acta Metall Sin, 2013, 29(4): 464-474.

全文: PDF(10271 KB)  
摘要: 

研究了一种快速凝固粉末冶金高温钛合金的微观组织及其影响因素. 结果表明: 热等静压 (HIP)成形温度可以显著地改变钛合金粉末的显微组织, 当HIP成形温度为700 ℃时, 粉末中的α'马氏体相开始微量分解,900 ℃时大量分解, 分解产物为等轴/板条α相和晶界β. α+β两相区HIP成形后的显微组织主要由等轴α相、板条α相和β相组成, 随着温度升高, 等轴相略有长大, 板条α相的长宽比显著降低; β单相区HIP成形后的显微组织为片层组织, 主要由粗大的片层α相和沿原始β晶界分布的晶间α相组成. 粉末粒度越小, HIP成形后的显微组织越细小. α+β两相区HIP成形并在α+β两相区进行热处理后的显微组织主要是由等轴α相和β转变组织组成的双态组织; β单相区HIP成形并在α+β两相区进行热处理后的显微组织是由等轴α相、板条α相和β转变组织组成的三态组织; α+β两相区或者β单相区HIP成形并在β单相区进行热处理后的显微组织均为较细的网篮组织. 稀土Nd含量增加, 显微组织的组成没有发生变化, 但基体中弥散析出的稀土相数量增加, 原始β晶粒尺寸明显减小.

关键词 快速凝固粉末冶金高温钛合金热等静压微观组织    
Abstract

The high temperature titanium alloy with rare earth element Nd addition was prepared by rapidly solidified powder metallurgy (RS-PM) processing. The microstructure of RS-PM high temperature titanium alloy has been investigated systemically. Microstructure study showed that the α' martensite phase in the RS powders initially decomposed at 700 ℃ and vastly at 900 ℃during the hot isostatic pressing (HIP) process. The decomposition products were equiaxed or lamellar α phase as well as grain boundary β phase. The microstructure of the specimen HIPed at the temperature in (α+β) phase field contained equiaxed α phase, lamellar α phase and β phase. The size of equiaxed α phase increased while the aspect ratio of the lamellar α phase decreased when the HIP temperature increased. The microstructure of the specimen HIPed at the temperature in β phase field contained coarsed lamellar α phase, grain boundary α phase and β phase. The microstructure became finer with decreasing the powder particle size. The microstructure of the sample HIPed in the (α+β) phase field and then heat treated in the (α+β) phase field was bi-modal microstructure containing equiaxed α phase and β transformed structure. The microstructure of the sample HIPed in the β phase field and then heat treated in the (α+β) phase field was ternary microstructure containing equiaxed α phase, lamellar α phase and β transformed structure. The microstructure of the sample HIPed in the (α+β) phase field or β phase field and then heat treated in the β phase field was basket-weave structure. The proportion of rich-Nd phases increased with increasing the Nd content,resulting in the reduction of original β grain size.

Key wordsrapid solidification    powder metallurgy    high temperature titanium alloy    hot isostatic pressing    microstructure
收稿日期: 2012-11-01     
作者简介: 李少强, 男, 1979年生, 博士生

[1] Li G P.  PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 1995


(李阁平. 中国科学院金属研究所博士学位论文, 沈阳, 1995)

[2] Chen Z Y.  PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2008

(陈志勇. 中国科学院金属研究所博士学位论文, 沈阳, 2008)

[3] Xu F.  PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2007

(徐锋.中国科学院金属研究所博士学位论文, 沈阳, 2007)

[4] Zhao L.  Master Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2008

(赵亮. 中国科学院金属研究所硕士学位论文, 沈阳, 2008)

[5] Xu F, Li G P, Yang R.  Acta Metall Sin, 2006; 42: 770

(徐锋, 李阁平, 杨锐. 金属学报, 2006; 42: 770)

[6] Germain L, Gey N, Humbert M, Hazotte A, Bocher P, Jahazi M.  Mater Charact, 2005; 54: 216

[7] Wanjara P, Jahazi M, Monajati H, Yue S.  Mater Sci Eng, 2006; A416: 300

[8] Madsen A, Ghonem H.  Mater Sci Eng, 1994; A177: 63

[9] Weinem D, Kumpert J, Peters M, Kaysser W A.  Mater Sci Eng, 1996; A206: 55

[10] Hagiwara M, Emura S.  Mater Sci Eng, 2003; A352: 85

[11] Madsen A, Ghonem H.  J Mater Eng Perform, 1995; 4: 301

[12] Cui W F, Liu C M, Zhou L, Luo G Z.  Mater Sci Eng, 2002; A323: 192

[13] Lee D H, Nam S W, Choe S J.  Scr Mater, 1999; 40: 265

[14] Kumar A, Singh N, Singh V.  Mater Charact, 2003; 51: 225

[15] Wanjara P, Jahazi M, Monajati H, Yue S.  Mater Sci Eng, 2006; A416: 300

[16] Srinadh K V S, Singh N, Singh V.  Bull Mater Sci, 2007; 30: 595

[17] Smith C H.  Mater Sci Eng, 1987; 89: 103

[18] Froes F H, Eylon D, Rowe R G, Yolton C F.  Bull Mater Sci, 1989; 12: 293

[19] Konitzer D G, Stanley J T, Loretto M H, Fraser H L.  Acta Mater, 1986; 34: 1269

[20] Broderick T F, Jackson A G, Jones H, Froes F H.  Metall Mater Trans, 1985; 16A : 1951

[21] Lu Y Z, Giessen B C, Whang S H.  Mater Res Soc Symp Proc, 1986; 58: 377

[22] Whang S H, Lu Y Z, Kim Y W.  J Mater Sci Lett, 1985; 4: 883

[23] Jones H, Joshi A, Rowe R G, Froes F H.  Int J Powder Metall, 1987; 23: 13

[24] Suryanarayana C, Froes F H, Rowe R G.  Int Mater Rev, 1991; 36(3): 85

[25] Habel U, Mctiernan B J.  Intermetallics, 2004; 12: 63

[26] Lograsso B K, Koss D A.  Metall Trans, 1988; 19A: 1767

[27] Delo D P, Piehler H R.  Acta Mater, 1999; 47: 2841

[28] Delo D P, Dutton R E, Semiatin S L, Piehler H R.  Acta Mater, 1999; 47: 3159
[1] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[2] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[3] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[4] 徐磊, 田晓生, 吴杰, 卢正冠, 杨锐. 热等静压成形Inconel 718粉末合金的显微组织和力学性能[J]. 金属学报, 2023, 59(5): 693-702.
[5] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[6] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[7] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[8] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[9] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[10] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
[11] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[12] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
[13] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[14] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[15] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.