Please wait a minute...
金属学报  2023, Vol. 59 Issue (5): 693-702    DOI: 10.11900/0412.1961.2021.00586
  本期目录 | 过刊浏览 |
热等静压成形Inconel 718粉末合金的显微组织和力学性能
徐磊1(), 田晓生1,2, 吴杰1, 卢正冠1, 杨锐1
1中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
2中国科学技术大学 材料科学与工程学院 沈阳 110016
Microstructure and Mechanical Properties of Inconel 718 Powder Alloy Prepared by Hot Isostatic Pressing
XU Lei1(), TIAN Xiaosheng1,2, WU Jie1, LU Zhengguan1, YANG Rui1
1Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

徐磊, 田晓生, 吴杰, 卢正冠, 杨锐. 热等静压成形Inconel 718粉末合金的显微组织和力学性能[J]. 金属学报, 2023, 59(5): 693-702.
Lei XU, Xiaosheng TIAN, Jie WU, Zhengguan LU, Rui YANG. Microstructure and Mechanical Properties of Inconel 718 Powder Alloy Prepared by Hot Isostatic Pressing[J]. Acta Metall Sin, 2023, 59(5): 693-702.

全文: PDF(2872 KB)   HTML
摘要: 

采用无坩埚感应熔炼超声气体雾化法(electrode induction melting gas atomization,EIGA)制备了Inconel 718预合金粉末,并利用SEM对合金粉末进行了表征,通过预合金粉末热等静压工艺制备了Inconel 718粉末合金坯料并测试了力学性能。研究结果表明,镍基合金Inconel 718易于制得化学成分满足要求的洁净粉末,但热等静压过程中碳化物形成元素扩散至粉末表面,并以氧化物为核心生成包含Ti和Nb的碳化物以及Ni3Nb的硬质薄膜,形成粉末高温合金的原始颗粒边界(prior particle boundaries,PPBs),使粉末合金的塑性、韧性和持久性能低于锻造合金。通过后续工艺抑制或消除热等静压过程中产生的原始颗粒边界可显著提升材料的综合力学性能。

关键词 Inconel 718合金粉末冶金热等静压原始颗粒边界    
Abstract

Inconel 718 alloy, with outstanding high-temperature resistance and mechanical properties, has been widely used in aviation fields. However, large and complex structural components are difficult to produce by traditional processes, which may lead to segregation, micropores, and Laves phases. Net-shape hot isostatic pressing (HIP) is a powder metallurgy processing technology that produces near-shape or net-shape components with the desired microstructures, properties, and cost effectiveness. In this study, Inconel 718 pre-alloyed powder was prepared using the electrode induction melting gas atomization technique, and then the pre-alloyed powder was characterized. Powder compacts were prepared by the HIP of the pre-alloyed powder, and their mechanical properties were tested. Although clean, high-quality powder can be obtained from Inconel 718 alloy due to its lower chemical reactivity compared to titanium alloys, carbide-forming elements diffuse to the powder surface during HIP. These form a hard film with the original oxide particles as nuclei, consisting of Ni3Nb and carbides of Ti and Nb. These films become prior particle boundaries (PPBs) in the obtained powder metallurgy Inconel 718 alloy, resulting in lower ductility, toughness, and stress rupture life than those of the wrought version of the alloy. Suppressing the formation of the PPBs during HIP or eliminating them via subsequent processing significantly improves the comprehensive mechanical properties of the material.

Key wordsInconel 718 alloy    powder metallurgy    hot isostatic pressing    prior particle boundary
收稿日期: 2021-12-28     
ZTFLH:  TG132.32  
基金资助:国家科技重大专项项目(J2019-VII-0005-0145);中国科学院战略性先导科技专项项目(XDA22010102);稳定支持基础研究领域青年团队计划项目(YSBR-025)
作者简介: 徐 磊,男,1977年生,研究员,博士
图1  异形圆柱包套尺寸示意图
图2  Inconel 718预合金粉末粒度分布
图3  Inconel 718预合金粉末XRD谱
图4  Inconel 718预合金粉末颗粒表面形貌
图5  Inconel 718粉末冶金构件局部解剖照片及室温拉伸断口
SampleTemperatureTensile propertyImpact propertyStress rupture life
UTS / MPaYS / MPaEl / %Z / %Jh
Wrought[19]RT1275-14001030-116712-2115.030-
ComponentRT127310864.54.08-
Test barRT1321104415.013.035-
Wrought[19]650oC1000-1200860-100012-1915.0-≥ 25
Component650oC11649274.04.0-26
Test bar650oC118099713.019.0-37
表1  Inconel 718粉末合金构件本体和随炉试棒的力学性能
图6  异形圆柱包套不同位置处Inconel 718粉末合金的相对密度仿真结果
图7  Inconel 718粉末合金室温和650℃拉伸力学性能
图8  Inconel 718粉末合金构件工业及显微CT测试结果
图9  随炉包套试棒及Inconel 718粉末合金构件的显微组织及EDS结果
PointPhaseCAlTiCrFeNiNbO
1MC14.270.1011.116.185.0612.2950.99-
2δ6.670.8810.3316.1414.2135.8114.970.99
表2  Inconel 718部件原始颗粒边界处的EDS结果 (mass fraction / %)
图10  Inconel 718构件样品的拉伸断口和断口纵截面的微观组织
图11  不同批次Inconel 718粉末合金坯料中PPBs面积占比和合金力学性能的关系
图12  不同粉末粒度Inconel 718粉末合金的显微组织
图13  Inconel 718粉末合金复压前后显微组织
1 Chamanfar A, Sarrat L, Jahazi M, et al. Microstructural characteristics of forged and heat treated Inconel-718 disks[J]. Mater. Des., 2013, 52: 791
doi: 10.1016/j.matdes.2013.06.004
2 Yeh A C, Lu K W, Kuo C M, et al. Effect of serrated grain boundaries on the creep property of Inconel 718 superalloy[J]. Mater. Sci. Eng., 2011, A530: 525
3 Baccino R, Moret F, Pellerin F, et al. High performance and high complexity net shape parts for gas turbines: The ISOPREC® powder metallurgy process[J]. Mater. Des., 2000, 21: 345
doi: 10.1016/S0261-3069(99)00093-X
4 Samarov V, Seliverstov D, Froes F H. Fabrication of near-net shape cost-effective titanium components by use of prealloyed powder and hot isostatic pressing[A]. Powder Metallurgy[M]. Almere: ASM International, 2015: 313
5 Yang R. Advances and challenges of TiAl base alloys[J]. Acta Metall. Sin., 2015, 51: 129
doi: 10.11900/0412.1961.2014.00396
5 杨 锐. 钛铝金属间化合物的进展与挑战[J]. 金属学报, 2015, 51: 129
6 Xu L, Guo R P, Wu J, et al. Progress in hot isostatic pressing technology of titanium alloy powder[J]. Acta Metall. Sin., 2018, 54: 1537
6 徐 磊, 郭瑞鹏, 吴 杰 等. 钛合金粉末热等静压近净成形研究进展[J]. 金属学报, 2018, 54: 1537
7 Raisson G, Guédou J Y, Guichard D, et al. Production of net-shape static parts by direct HIPing of nickel base superalloy prealloyed powders[J]. Adv. Mater. Res., 2011, 278: 277
8 Kracke A. Superalloys, the most successful alloy system of modern times - past, present and future[A]. Proceedings of the 7th International Symposium on Superalloy 718 and Derivatives [C]. Pittsburgh, Pennsylvania: TMS, 2010: 13
9 Chang L T. Preparation and hot isostatic press compaction of superalloy powder with less ceramic inclusions[D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2014
9 常立涛. 洁净高温合金粉末的制备及其热等静压工艺研究[D]. 沈阳: 中国科学院金属研究所, 2014
10 Habel U. Microstructure and mechanical properties of HIP PM 718[A]. Superalloys 718. 625. 706 and Various Derivatives[M]. Pittsburgh, Pennsylvania: TMS, 2001: 625
11 Rao G A, Srinivas M, Sarma D S. Effect of oxygen content of powder on microstructure and mechanical properties of hot isostatically pressed superalloy Inconel 718[J]. Mater. Sci. Eng., 2006, A435-436: 84
12 Rao G A, Srinivas M, Sarma D S. Influence of modified processing on structure and properties of hot isostatically pressed superalloy Inconel 718[J]. Mater. Sci. Eng., 2006, A418: 282
13 Chang L T, Sun W R, Cui Y Y, et al. Influences of hot-isostatic-pressing temperature on microstructure, tensile properties and tensile fracture mode of Inconel 718 powder compact[J]. Mater. Sci. Eng., 2014, A599: 186
14 Chang L T, Sun W R, Cui Y Y, et al. Microstructure, tensile properties, and hot-working characteristics of a hot isostatic-pressed powder metallurgy superalloy[J]. Metall. Mater. Trans., 2017, 48A: 1273
15 Chang L T, Sun W R, Cui Y Y, et al. Preparation of hot-isostatic-pressed powder metallurgy superalloy Inconel 718 free of prior particle boundaries[J]. Mater. Sci. Eng., 2017, A682: 341
16 Xu L, Guo R P, Bai C G, et al. Effect of hot isostatic pressing conditions and cooling rate on microstructure and properties of Ti-6Al-4V alloy from atomized powder[J]. J. Mater. Sci. Technol., 2014, 30: 1289
doi: 10.1016/j.jmst.2014.04.011
17 Wu J, Guo R P, Xu L, et al. Effect of hot isostatic pressing loading route on microstructure and mechanical properties of powder metallurgy Ti2AlNb alloys[J]. J. Mater. Sci. Technol., 2017, 33: 172
18 Guo R P, Xu L, Zong B Y, et al. Preparation and ring rolling processing of large size Ti-6Al-4V powder compact[J]. Mater. Des., 2016, 99: 341
doi: 10.1016/j.matdes.2016.02.128
19 Rao G A, Kumar M, Srinivas M, et al. Effect of thermomechanical working on the microstructure and mechanical properties of hot isostatically pressed superalloy Inconel 718[J]. Mater. Sci. Eng., 2004, 383: 201
doi: 10.1016/j.msea.2004.05.062
20 Wu J, Xu L, Guo R P, et al. Preparation of γ-TiAl alloy from powder metallurgy route and analysis of the influence factors of mechanical properties[J]. Chin. J. Mater. Res., 2015, 29: 127
20 吴 杰, 徐 磊, 郭瑞鹏 等. 粉末冶金Ti-47Al-2Cr-2Nb-0.15B合金的制备及力学性能影响因素[J]. 材料研究学报, 2015, 29: 127
21 Wu J. Densification behavior of Ti-5Al-2.5Sn ELI pre-alloyed powders under hot isostatic pressing[D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2011
21 邬 军. Ti-5Al-2.5Sn ELI预合金粉末热等静压致密化行为研究[D]. 沈阳: 中国科学院金属研究所, 2011
22 Cheng W X. Investigation on densification behavior and finite element modeling of Ti-5Al-2.5Sn ELI pre-alloyed powders during HIPing[D]. Beijing: University of Chinese Academy of Science, 2013
22 程文祥. Ti-5Al-2.5Sn ELI预合金粉末热等静压致密化行为与有限元模拟研究[D]. 北京: 中国科学院大学, 2013
23 Guo R P, Xu L, Bai C G, et al. Effects of can design on tensile properties of typical powder metallurgy titanium alloys[J]. Chin. J. Nonferrous Met., 2014, 24: 2050
23 郭瑞鹏, 徐 磊, 柏春光 等. 包套设计对典型粉末钛合金拉伸性能的影响[J]. 中国有色金属学报, 2014, 24: 2050
24 Qiu C L. Net-shape hot isostatic pressing of a nickel-based powder superalloy[D]. Birmingham, UK: University of Birmingham, 2010
25 Lang L H, Wang G, Huang X N, et al. Shielding effect of capsules and its impact on mechanical properties of P/M aluminium alloys fabricated by hot isostatic pressing[J]. Chin. J. Nonferrous Met., 2016, 26: 261
25 郎利辉, 王 刚, 黄西娜 等. 包套在铝合金粉末热等静压成形中的屏蔽效应及其对性能的影响[J]. 中国有色金属学报, 2016, 26: 261
26 Lu Z G, Wu J, Xu L, et al. Ring rolling forming and properties of Ti2AlNb special shaped ring prepared by powder metallurgy[J]. Acta Metall. Sin., 2019, 55: 729
26 卢正冠, 吴 杰, 徐 磊 等. Ti2AlNb异形粉末环件的轧制成形与性能研究[J]. 金属学报, 2019, 55: 729
doi: 10.11900/0412.1961.2019.00015
27 Hou J, Dong J X, Yao Z H, et al. Influences of PPB, PPB affect zone, grain boundary and phase boundary on crack propagation path for a P/M superalloy FGH4096[J]. Mater. Sci. Eng., 2018, A724: 17
28 Ingesten N G, Warren R, Winberg L. The nature and origin of previous particle boundary precipitates in P/M superalloys[A]. Proceedings of a Conference held in Liège on High Temperature Alloys for Gas Turbines 1982[C]. Belgium: Springer, 1982: 1013
[1] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[2] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
[3] 汤雁冰, 沈新旺, 刘志红, 乔岩欣, 杨兰兰, 卢道华, 邹家生, 许静. 激光选区熔化Inconel 718合金在NaOH溶液中的腐蚀行为[J]. 金属学报, 2022, 58(3): 324-333.
[4] 李亚敏, 张瑶瑶, 赵旺, 周生睿, 刘洪军. CuInconel 718合金Nb偏析影响机理的第一性原理研究[J]. 金属学报, 2022, 58(2): 241-249.
[5] 赵雷, 王辉, 杨丽霞, 陈学斌, 郎润秋, 贺林峰, 陈东风, 王海舟. Fe-Co-Ni系组合合金热等静压高通量制备方法初探[J]. 金属学报, 2021, 57(12): 1627-1636.
[6] 毕胜, 李泽琛, 孙海霞, 宋保永, 刘振宇, 肖伯律, 马宗义. 高能球磨结合粉末冶金法制备碳纳米管增强7055Al复合材料的微观组织和力学性能[J]. 金属学报, 2021, 57(1): 71-81.
[7] 和思亮, 赵云松, 鲁凡, 张剑, 李龙飞, 冯强. 热等静压对铸态及固溶态第二代镍基单晶高温合金显微缺陷及持久性能的影响[J]. 金属学报, 2020, 56(9): 1195-1205.
[8] 卢正冠,吴杰,徐磊,崔潇潇,杨锐. Ti2AlNb异形粉末环件的轧制成形与性能研究[J]. 金属学报, 2019, 55(6): 729-740.
[9] 覃嘉宇, 李小强, 金培鹏, 王金辉, 朱云鹏. 碳纳米管(CNTs)增强AZ91镁基复合材料组织与力学性能研究[J]. 金属学报, 2019, 55(12): 1537-1543.
[10] 马国楠, 王东, 刘振宇, 毕胜, 昝宇宁, 肖伯律, 马宗义. 热压烧结温度对SiC/Al-Zn-Mg-Cu复合材料微观结构与力学性能的影响[J]. 金属学报, 2019, 55(10): 1319-1328.
[11] 徐磊, 郭瑞鹏, 吴杰, 卢正冠, 杨锐. 钛合金粉末热等静压近净成形研究进展[J]. 金属学报, 2018, 54(11): 1537-1552.
[12] 刘永长, 张宏军, 郭倩颖, 周晓胜, 马宗青, 黄远, 李会军. Inconel 718变形高温合金热加工组织演变与发展趋势[J]. 金属学报, 2018, 54(11): 1653-1664.
[13] 潘宇, 路新, 刘程程, 孙健卓, 佟健博, 徐伟, 曲选辉. Sn对TiAl基合金烧结致密化与力学性能的影响[J]. 金属学报, 2018, 54(1): 93-99.
[14] 徐伟,路新,杜艳霞,孟庆宇,黎鸣,曲选辉. 粉末冶金制备Ti-Fe二元合金的耐腐蚀性能[J]. 金属学报, 2017, 53(1): 38-46.
[15] 吴杰,徐磊,卢正冠,崔玉友,杨锐. Ti-22Al-24Nb-0.5Mo粉末合金的制备及电子束焊接*[J]. 金属学报, 2016, 52(9): 1070-1078.