Please wait a minute...
金属学报  2010, Vol. 46 Issue (2): 172-178    DOI: 10.3724/SP.J.1037.2009.00327
  论文 本期目录 | 过刊浏览 |
连续升温过程中γ-Fe→δ-Fe→液态Fe相变的分子动力学模拟
刘益虎; 吴永全; 沈通; 王召柯; 蒋国昌
上海大学上海市现代冶金及材料制备重点实验室; 上海 200072
MOLECULAR DYNAMICS SIMULATION OF PHASE TRANSFORMATION of  γ-Fe→δ-Fe→LIQUID–Fe IN CONTINUOUS TEMPERATURE–RISE PROCESS
LIU Yihu; WU Yongquan; SHEN Tong; WANG Zhaoke; JIANG Guochang
Shanghai Key Laboratory of Modern Metallurgy & Materials Processing; Shanghai University; Shanghai 200072
引用本文:

刘益虎 吴永全 沈通 王召柯 蒋国昌. 连续升温过程中γ-Fe→δ-Fe→液态Fe相变的分子动力学模拟[J]. 金属学报, 2010, 46(2): 172-178.
, . MOLECULAR DYNAMICS SIMULATION OF PHASE TRANSFORMATION of  γ-Fe→δ-Fe→LIQUID–Fe IN CONTINUOUS TEMPERATURE–RISE PROCESS[J]. Acta Metall Sin, 2010, 46(2): 172-178.

全文: PDF(3036 KB)  
摘要: 

采用所构建的长程F-S势函数, 对连续升温过程中γ-Fe→δ-Fe→液态Fe的相变过程进行了分子动力学(MD)模拟. 结果表明, 计算得到的γ-Fe, δ-Fe以及液态Fe的微观结构(径向分布函数、配位数)和宏观物性(密度)都能与实验结果 吻合很好, 但相变温度点与实验值的偏差较大, 推测是由过快升温速度造成的过热度过高所致. 从微观结构、瞬态能量及密度的分析出发, 讨论了固态相变(γ-Fe→δ-Fe)和固-液相变(δ-Fe→液态Fe)的具体过程. 其中, 固态相变主要形 成于晶格扭曲和滑移,而固-液相变即熔化过程起始于固体岛颗粒的边缘, 并逐渐向其中心扩散.在相变演化过程中, 通过瞬态能量和密度的起伏观察到明显的孕育过程.

关键词 纯Fe 升温相变 分子动力学 微观结构    
Abstract

Understanding high–temperature phase transformations of pure Fe is fundamental for quality control and product design of steels. Various theoretical methods have been used to determine dynamically the mechanism of phase transformations in pure Fe including  γ–Fe to δ–Fe and δ–Fe to liquid–Fe. Among these methods, molecular dynamics (MD) simulation has become a prospective method, in which atomic interactions play a key role in phase transformations. However, most attention ws focused on the MD simulation of temperature–drop phase transformtions rather than temprture–rise phase transformations befor. In the present study the isothermal–isobaric MD simulation at a wide temperature range of  γ-Fe→δ-Fe→liquid–Fe transformations in pure Fe was carried out by giving a set of long–rnge Finnis–Sinclair potential parameters. The results show that a better agreemenbetween simultion nd experimental results for the microstructures (including radial distribution functions and coordination numbers) and densities of transformed phases validate that the set of potential parameters for the MD simulation are reasonable. The larger difference between the calculated and experimental trnsfrmation temperatureiattributed to the effect of superheat degree induced by ultrafast heating speed in the MD simulation. Evolvement of microsructures exibits lattice–distorting and sldng induced by  γ–Fe to δ-Fe phase ransformation and melting of δ–Fe islands from δ–Fe to liquid–Fe. Finall, in the MD simulation stronger and stronger fluctuations of instantaneous energy ad density just before transformations, especially melting, show an apparent pregnant process in phase transfrmations.

Key wordspure Fe    temperture–rise phase transition    molecular dynamics    microstructure
收稿日期: 2009-05-15     
基金资助:

国家自然科学基金项目50504010和50974083, 国家自然科学基金委员会-上海宝钢集团公司联合基金项目50774112, 上海市青年科技启明星计划项目07QA14021, 长江学者和创新团队发展计划项目IRT0739及上海市教育委员会科研创新项目09YZ24资助

作者简介: 刘益虎, 男, 1986年生, 硕士生

[1] Daw M S, Baskes M I. Phys Rev, 1984; 29B: 6443
[2] Finnis M W, Sinclair J E. Philos Mag, 1984; 50A: 45
[3] Sutton A P, Chen J. Philos Mag Lett, 1990; 61: 139
[4] Lennad–Jones J E. Physica, 1937; 4A: 941
[5] Daw M S, Baskes M I. Phys Rev Lett, 1983; 50: 1285
[6] Ackland G J, Vitek V. Phys Rev, 1990; 45B: 10324
[7] Wen Y H, Zhu T, Cao L X, Wang C Y. Acta Phys Sin, 2003; 52: 2520
(文玉华, 朱弢, 曹立霞, 王崇愚. 物理学报, 2003; 52: 2520)
[8] Liu H Y, Wang X X, Wu H A, Wang Y. Acta Phys Sin, 2002; 51: 2308
[9] Yang Q W, Zhu R Z. Acta Phys Sin, 2005; 54: 4245
(杨全文, 朱如曾. 物理学报, 2005; 54: 4245)
[10] Daw M S, Foiles S M. Phys Rev Lett, 1987; 59: 2756
[11] Ackland G J, Tichy G, Vitek V, Finnis M W. Philos Mag, 1987; 56A: 735
[12] Li H, Wang G H, Ding F, Wang J L, Shen W F. Phys Lett, 2001; 280A: 325
[13] Shimomura Y, Sugio K, Kogure Y, Doyama M. Comput Mater Sci, 1999; 14: 36
[14] Li X H, Huang J F. J Solid State Chem, 2003; 176: 234
[15] Foiles S M. Surf Sci, 1987; 191: 329
[16] Ackland G J, Bacon D J, Calder A F, Harry T. Philos Mag, 1997; 75A: 713
[17] Belonoshko A B, Ahuja R, Johansson B. Phys Rev Lett, 200084: 3639
[18] Colakoglu K, Ugur G, Cakmak M, Tutuncu H M. Turk Phys, 1999; 23: 479
[19] Bacon D J, Diaz de la Rubia T J. Nucl Mater, 1994; 216: 275
[20] Bacon D J, Calder A F, Kapinos V G, Wooding S J. Nucl Instrum Meth, 1995; 102B: 37
[21] Cheng J W, Zhang X M, WY Q, Wang X L, Zheng S B, Jiang G C. Acta Phys–Chim Sin, 2007; 23: 779
(程江伟, 张先明, 吴永全, 王秀丽, 郑少波, 蒋国昌. 物理化学学报, 2007; 23: 779)
[22] Smith W, Forester T R. J Mol Graph, 1996; 14: 336
[23] Allen M P, Tildesley D J. Computer Simulation of Liquid. New York: Oxford University Press, 1987: 28
[24] Ma J R, Chen L M. Metals Handbook. 9th Ed., Vol.2, Beijing: Machinery Industy Press, 1994: 89
(马九荣, 陈立敏. 金属手册. 第9版. 第2卷. 北京: 机械工业出版社, 1994: 89)
[25] Basinski Z S, Hume–Rothery W, Sutton A L. Proc R Soc Lond, 1955; 229A: 49
[26] Kirshenbaum A D, Cahill J A. Trans Met Soc, 1962; 224: 816
[27] Shibuta Y, Takamoto S, Suzuki T. ISIJ Int, 2008; 48: 1582
[28] Jeffrey P. Rep Prog Phys, 2001; 64: 777
[29] Massalski T B, Okamoto H, Tanner L. Binary Phase Diagrams. 2nd Ed., Ohio: ASM International, 1990: 30
[30] Wang H R, Ye Y F, Wang W M, Qin J Y. Chin Sci Bull, 2000; 45: 1501
(王焕荣, 叶以富, 王伟民, 秦敬玉. 科学通报, 2000; 45: 1501)
[31] Wu Y Q. PhD Thesis, Shanghai University, 2004
(吴永全. 上海大学博士学位论文, 2004)
[32] Shunchi N, Fumiko Y. J Chem Phys, 1986; 84: 1803
[33] Holender J M. Phys Rev, 1990; 41B: 8054

[1] 张德印, 郝旭, 贾宝瑞, 吴昊阳, 秦明礼, 曲选辉. Y2O3 含量对燃烧合成Fe-Y2O3 纳米复合粉末性能的影响[J]. 金属学报, 2023, 59(6): 757-766.
[2] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[3] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[4] 解磊鹏, 孙文瑶, 陈明辉, 王金龙, 王福会. 制备工艺对FGH4097高温合金微观组织与性能的影响[J]. 金属学报, 2022, 58(8): 992-1002.
[5] 李金富, 李伟. 铝基非晶合金的结构与非晶形成能力[J]. 金属学报, 2022, 58(4): 457-472.
[6] 李海勇, 李赛毅. Al <111>对称倾斜晶界迁移行为温度相关性的分子动力学研究[J]. 金属学报, 2022, 58(2): 250-256.
[7] 张显程, 张勇, 李晓, 王梓萌, 贺琛贇, 陆体文, 王晓坤, 贾云飞, 涂善东. 异构金属材料的设计与制造[J]. 金属学报, 2022, 58(11): 1399-1415.
[8] 马敏静, 屈银虎, 王哲, 王军, 杜丹. Ag-CuO触点材料侵蚀过程的演化动力学及力学性能[J]. 金属学报, 2022, 58(10): 1305-1315.
[9] 王洪伟, 何竹风, 贾楠. 非均匀组织FeMnCoCr高熵合金的微观结构和力学性能[J]. 金属学报, 2021, 57(5): 632-640.
[10] 李宁, 黄信. 块体非晶合金的3D打印成形研究进展[J]. 金属学报, 2021, 57(4): 529-541.
[11] 潘杰, 段峰辉. 非晶合金的回春行为[J]. 金属学报, 2021, 57(4): 439-452.
[12] 梁晋洁, 高宁, 李玉红. 体心立方Fe中微裂纹与间隙型位错环相互作用的分子动力学模拟[J]. 金属学报, 2020, 56(9): 1286-1294.
[13] 周丽, 李明, 王全兆, 崔超, 肖伯律, 马宗义. 31%B4Cp/6061Al复合材料的热变形及加工图的研究[J]. 金属学报, 2020, 56(8): 1155-1164.
[14] 李源才, 江五贵, 周宇. 纳米孔洞对单晶/多晶Ni复合体拉伸性能的影响[J]. 金属学报, 2020, 56(5): 776-784.
[15] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.