Please wait a minute...
金属学报  2010, Vol. 46 Issue (2): 179-183    DOI: 10.3724/SP.J.1037.2009.00118
  论文 本期目录 | 过刊浏览 |
离子交换法制备ZrO2∶Eu 3+纳米晶及其发光特性
莎仁1; 王喜贵1; 李霞2
1.内蒙古师范大学化学与环境科学学院内蒙古自治区功能材料与化学重点实验室; 呼和浩特 010022
2.内蒙古科技大学稀土学院; 包头 014010
ZrO2∶Eu 3+ NANOCRYSTAL FABRICATION AND ITS LUMINESCENCE PROPERTIES BY ION EXCHANGE METHOD
SHA Ren1; WANG Xigui1;LI Xia2
1.Inner Mongolia Key Laboratory for Physics and Chemistry of Functional Materials; College of Chemistry and Environmental Science; Inner Mongolia Normal University; Huhhot 010022
2.College of Rare Earth; Inner Mongolia University of Science and Technology; Baotou 014010
引用本文:

莎 仁 王喜贵 李霞. 离子交换法制备ZrO2∶Eu 3+纳米晶及其发光特性[J]. 金属学报, 2010, 46(2): 179-183.
. ZrO2∶Eu 3+ NANOCRYSTAL FABRICATION AND ITS LUMINESCENCE PROPERTIES BY ION EXCHANGE METHOD[J]. Acta Metall Sin, 2010, 46(2): 179-183.

全文: PDF(1609 KB)  
摘要: 

以强碱性阴离子交换树脂为沉淀剂, 采用离子交换法制备了ZrO2∶Eu 3+纳米晶. 通过XRD, TEM,HRTEM和EDS等对晶体的结构、形貌及化学成分进行了表征, 利用3D荧光光谱、激发光谱和发射光谱研究了Eu3+在ZrO2纳米晶中的发光性质. 结果表明, 焙烧温度在800℃以下所得的ZrO2∶Eu 3+纳米晶主要为四方结构, 晶粒尺寸约为5-20 nm, 随着焙烧温度的升高, 样品的晶结构发生了细微变化, 从900℃开始出现了少量单斜晶. 由ZrO2∶Eu 3+的3D荧光光谱确定了其最佳监测波长和发射波长, 在394 nm波长光的激发下观察到纳米ZrO2 中Eu3+的590 nm (5D0 →7F1) 和606 nm (5D07F2) 特征发射谱, 随着相结构细微的变化, 发射光谱的形状及强度均发生变化, 说明ZrO2∶Eu 3+纳米晶的发光性质对其结构非常敏感.

关键词 ZrO2∶Eu 3+纳米晶 离子交换法发光性质    
Abstract

Eu3+ doped luminescent nano–materials have become a research focus due to their outstanding physical and chemical properties in light–emitting, magnetism, thermology, catalysis and chemical activity etc.. Furthermore, the relationship between crystal structure and energy levels transition of these nano–materials can be easily obtained by measuring the spectra of doped Eu3+. Among luminescence nano–materials, ZrO2 nano–crystal as a potential one has been attracted great attention in its higher refractive, good optical transparency and relatively low phonon energy. By now certain materials doped RE ion in the matrix ZrO2 for ZrO2∶Er3+–Y3+, ZrO2∶Pr3+ and ZrO2∶(Pr3+, Sm3+) etc., and mesoporous ZrO2 nano–crystals doped Eu3+ by hydrothermal way have been reported. In present study, the ZrO2∶Eu3+ nano–crystal was prepared with high purity and uniform composition by ion exchange method using strong OH as a precipitant. Its composition, morphology and structure were characterized by XRD, TEM, HRTEM and EDS. The experimental results show that it has a tetragonal crystal structure and its average grain size is 5—20 nm after calcined at 800 ℃ . It is found that the microstructure of ZrO2∶Eu3+ changes slightly with the increase of calcining temperature till a small amount of monoclinic phase forms after calcined at higher than 900  ℃. The luminescent properteof Eu3+ in the ZrO2 nano–crystal were measured by 3D emission and excitation spectra. The characteristic emissin bands of 590 nm (5D0 →7F1) and 606 nm (5D0 →7F2) of Eu3+ were observed at an excitation spectrum of λex=394 nm. The luminescent properties of ZrO2∶Eu 3+ are very sensitive to its microstructure change since slight changes in the ZrO2∶Eu 3+ microstructure cause the changes in the shape and intensity of its emission spectra.

Key wordsZrO2∶Eu 3+  aocrystal    ion exchange method    luminescence property
收稿日期: 2009-02-25     
基金资助:

国家自然科学基金项目20161001和内蒙古自治区自然科学基金项目200711020213资助

作者简介: 莎仁, 女, 蒙古族, 1963年生, 副教授

[1] Song H W, Chen B J, Peng H S. Appl Phys Lett, 2002; 8: 1776
[2] Park J K, Park S M, Kim C H. J Mater Sci Lett, 2001; 20: 2231
[3] Guo Y F, Ma W M, Wen L, Shen S F, Liu J, Wang H D, Yin K. Acta Metall Sin, 2008; 44: 1149
(郭易芬, 马伟民, 闻 雷, 沈世妃, 刘晶, 王华栋, 伊 凯. 金属学报, 2008; 44: 1149)
[4] Sha R, Wang X G, Wu H Y, Li X. Chin J Inorg Chem, 2008; 24: 981
(莎仁, 王喜贵, 吴红英, 李 霞. 无机化学学报, 2008; 24: 981)
[5] Li P L, Yang Z P, Wang Z J, Xiong Z J, Guo Q L. Acta Phys–Chim Sin, 2008; 24: 179
(李盼来, 杨志平, 王志军, 熊志军, 郭庆林. 物理化学学报, 2008; 24: 179)
[6] Liu G X, Su R X, Wang J X, Dong X T. Chem J Chin Univ, 2008; 29: 461
(刘桂霞, 苏瑞相, 王进贤, 董相廷. 高等学校化学学报, 2008; 29: 461)
[7] Fu S L, Yin T, Ding Q, Zhao W R. Acta Phys Sin, 2006; 55: 4940
(符史流, 尹涛, 丁球, 赵韦人. 物理学报, 2006; 55: 4940)
[8] Jiang S, Schulze W A, Stangle G C. J Mater Res, 1997; 12: 2374
[9] Lu G, .Miura N, Yamazoe N. J Mater Chem, 1997; 7: 1445
[10] Yu Y, Zhou B B. Acta Phys in, 2006; 55: 4332
(俞莹, 周百斌. 物理学报, 2006; 55: 4332)
[11] Liu J X, L  S C, Li X M. Spectrosc Spectral Anal, 2006; 26: 593
(刘金霞, 吕树臣, 李秀明. 光谱学与光谱分析, 2006; 26: 593)
[12] Yang X J, Chen Y H, Shi C S. J Chin Rare Earth Soc, 2002; 20: 531
(杨秀健, 陈永虎, 施朝淑. 中国稀土学报, 2002; 20: 531)
[13] Liu H Q, Wang L L, Zou B S. Acta Phy Sin, 2007; 56: 556
(刘晃清, 王玲玲, 邹炳锁. 物理学报, 2007; 56: 556)
[14] Li X M, Lu S C, Liu J X. Chin J Lumin, 2005; 26: 220
(李秀明, 吕树臣, 刘金霞. 发光学报, 2005; 26: 220)
[15] Chen W, Joly A G, Kowalchuk C M, Malm J, Huang Y. J Phys Chem, 2002; 106B: 7034
[16] Chen L M, Liu Y N, Li Y D. J Alloys Compd, 2004; 381: 266

No related articles found!