|
|
含氧纳米多晶 α-Ti拉伸力学性能与变形机制的分子动力学模拟 |
任军强1,2, 邵珊1, 王启3, 卢学峰1( ), 薛红涛1, 汤富领1 |
1 兰州理工大学 省部共建有色金属先进加工与再利用国家重点实验室 兰州 730050 2 西安交通大学 金属材料强度国家重点实验室 西安 710049 3 黄淮学院 能源工程学院 驻马店 463000 |
|
Molecular Dynamics Simulation of Tensile Mechanical Properties and Deformation Mechanism of Oxygen-Containing Nano-Polycrystalline α-Ti |
REN Junqiang1,2, SHAO Shan1, WANG Qi3, LU Xuefeng1( ), XUE Hongtao1, TANG Fuling1 |
1 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China 2 State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China 3 School of Energy Engineering, Huanghuai University, Zhumadian 463000, China |
引用本文:
任军强, 邵珊, 王启, 卢学峰, 薛红涛, 汤富领. 含氧纳米多晶 α-Ti拉伸力学性能与变形机制的分子动力学模拟[J]. 金属学报, 2024, 60(2): 220-230.
Junqiang REN,
Shan SHAO,
Qi WANG,
Xuefeng LU,
Hongtao XUE,
Fuling TANG.
Molecular Dynamics Simulation of Tensile Mechanical Properties and Deformation Mechanism of Oxygen-Containing Nano-Polycrystalline α-Ti[J]. Acta Metall Sin, 2024, 60(2): 220-230.
1 |
Tabie V M, Li C, Saifu W, et al. Mechanical properties of near alpha titanium alloys for high-temperature applications—A review [J]. Aircr. Eng. Aerosp. Technol., 2020, 92: 521
|
2 |
Gao P F, Fu M W, Zhan M, et al. Deformation behavior and microstructure evolution of titanium alloys with lamellar microstructure in hot working process: A review [J]. J. Mater. Sci. Technol., 2020, 39: 56
doi: 10.1016/j.jmst.2019.07.052
|
3 |
Dong Y H, Chen I W. Onset criterion for flash sintering [J]. J. Am. Ceram. Soc., 2015, 98: 3624
doi: 10.1111/jace.2015.98.issue-12
|
4 |
Mahata A, Sikdar K. Molecular dynamics simulation of nanometer scale mechanical properties of hexagonal Mg-Li alloy [J]. J. Magnes. Alloy., 2016, 4: 36
|
5 |
Suryanarayana C. Structure and properties of nanocrystalline materials [J]. Bull. Mater. Sci., 1994, 17: 307
doi: 10.1007/BF02745220
|
6 |
Hajizadeh K, Alamdari S G, Eghbali B. Stored energy and recrystallization kinetics of ultrafine grained titanium processed by severe plastic deformation [J]. Physica, 2013, 417B: 33
|
7 |
Huang Q S, Zhu Q, Chen Y B, et al. Twinning-assisted dynamic adjustment of grain boundary mobility [J]. Nat. Commun., 2021, 12: 6695
doi: 10.1038/s41467-021-27002-3
pmid: 34795234
|
8 |
Liu X, Sun W K, Liew K M. Multiscale modeling of crystal plastic deformation of polycrystalline titanium at high temperatures [J]. Comput. Methods Appl. Mech. Eng., 2018, 340: 932
doi: 10.1016/j.cma.2018.06.026
|
9 |
Sotniczuk A, Kuczyńska-Zemła D, Królikowski A, et al. Enhancement of the corrosion resistance and mechanical properties of nanocrystalline titanium by low-temperature annealing [J]. Corros. Sci., 2019, 147: 342
doi: 10.1016/j.corsci.2018.11.016
|
10 |
Ren J Q, Wang Q, Lu X F, et al. Effect of oxygen content on active deformation systems in pure titanium polycrystals [J]. Mater. Sci. Eng., 2018, A731: 530
|
11 |
Conrad H, Okasaki K, Gadgil V, et al. Dislocation structure and the strength of titanium [A]. Electron Microscopy and Structure of Materials [M]. Berkeley: University of California Press, 1972: 438
|
12 |
Shechtman D, Brandon D G. Orientation dependent slip in polycrystalline titanium [J]. J. Mater. Sci., 1973, 8: 1233
doi: 10.1007/BF00549337
|
13 |
Yu Q, Qi L, Tsuru T, et al. Origin of dramatic oxygen solute strengthening effect in titanium [J]. Science, 2015, 347: 635
doi: 10.1126/science.1260485
|
14 |
Voronoi G. Nouvelles applications des paramètres continus à théorie des formes quadratiques. Deuxième Mémoire. Recherches sur les paralléloèdres primitifs [J]. J. Reine Angew. Math., 1909, (136): 67
|
15 |
Lee E, Lee K R, Baskes M I, et al. A modified embedded-atom method interatomic potential for ionic systems: 2NNMEAM + Qeq [J]. Phys. Rev., 2016, 93B: 144110
|
16 |
Rose J H, Smith J R, Guinea F, et al. Universal features of the equation of state of metals [J]. Phys. Rev., 1984, 29B: 2963
|
17 |
Plimpton S. Fast parallel algorithms for short-range molecular dynamics [J]. J. Comput. Phys., 1995, 117: 1
|
18 |
Hirel P. Atomsk: A tool for manipulating and converting atomic data files [J]. Comput. Phys. Commun., 2015, 197: 212
doi: 10.1016/j.cpc.2015.07.012
|
19 |
Stukowski A. Visualization and analysis of atomistic simulation data with OVITO—The Open Visualization Tool [J]. Modell. Simul. Mater. Sci. Eng., 2010, 18: 015012
|
20 |
Li J. AtomEye: An efficient atomistic configuration viewer [J]. Modell. Simul. Mater. Sci. Eng., 2003, 11: 173
doi: 10.1088/0965-0393/11/2/305
|
21 |
Sills R B, Cai W. Solute drag on perfect and extended dislocations [J]. Philos. Mag., 2016, 96: 895
doi: 10.1080/14786435.2016.1142677
|
22 |
Stukowski A, Bulatov V V, Arsenlis A. Automated identification and indexing of dislocations in crystal interfaces [J]. Modell. Simul. Mater. Sci. Eng., 2012, 20: 085007
|
23 |
Ikeda H, Qi Y, Çagin T, et al. Strain rate induced amorphization in metallic nanowires [J]. Phys. Rev. Lett., 1999, 82: 2900
doi: 10.1103/PhysRevLett.82.2900
|
24 |
Wen Y H, Zhu Z Z, Zhu R Z. Molecular dynamics study of the mechanical behavior of nickel nanowire: Strain rate effects [J]. Comput. Mater. Sci., 2008, 41: 553
|
25 |
Tang W H, Zhang J, Wu J Y, et al. Mechanical properties and enhancement mechanisms of titanium-graphene nanocomposites [J]. Acta Mech. Sin., 2020, 36: 855
doi: 10.1007/s10409-020-00968-x
|
26 |
Li B, Ma E. Zonal dislocations mediating {10ˉ11} <10ˉ1ˉ2> twinning in magnesium [J]. Acta. Mater., 2009, 57: 1734
doi: 10.1016/j.actamat.2008.12.016
|
27 |
Ren J Q, Sun Q Y, Xiao L, et al. Atomistic simulation of tension-compression asymmetry and its mechanism in titanium single-crystal nanopillars oriented along the [11ˉ20] direction [J]. Comput. Mater. Sci., 2018, 147: 272
doi: 10.1016/j.commatsci.2018.02.029
|
28 |
Sakai T, Fine M E. Plastic deformation of Ti-Al single crystals in prismatic slip [J]. Acta. Metall., 1974, 22: 1359
doi: 10.1016/0001-6160(74)90036-4
|
29 |
Conrad H. Effect of interstitial solutes on the strength and ductility of titanium [J]. Prog. Mater. Sci., 1981, 26: 123
doi: 10.1016/0079-6425(81)90001-3
|
30 |
Wang Y N, Chen S J, Dong X C. Dislocation Theory and Its Application [M]. Beijing: Metallurgical Industry Press, 2007: 101
|
30 |
王亚男, 陈树江, 董希淳. 位错理论及其应用 [M]. 北京: 冶金工业出版社, 2007: 101
|
31 |
Wang Y B, Li B Q, Sui M L, et al. Deformation-induced grain rotation and growth in nanocrystalline Ni [J]. Appl. Phys. Lett., 2008, 92: 011903
|
32 |
Hasan M S, Lee R, Xu W W. Deformation nanomechanics and dislocation quantification at the atomic scale in nanocrystalline magnesium [J]. J. Magnes. Alloy., 2020, 8: 1296
|
33 |
Ghaffarian H, Taheri A K, Kang K, et al. Molecular dynamics simulation study of the effect of temperature and grain size on the deformation behavior of polycrystalline cementite [J]. Scr. Mater., 2015, 95: 23
doi: 10.1016/j.scriptamat.2014.09.022
|
34 |
Chen P, Wang F X, Li B. Transitory phase transformations during {10ˉ12} twinning in titanium [J]. Acta Mater., 2019, 171: 65
doi: 10.1016/j.actamat.2019.04.002
|
35 |
Zhang H, Pan A Q, Hei R Y, et al. An atomistic simulation on the tensile and compressive deformation mechanisms of nano-polycrystalline Ti [J]. Appl. Phys., 2021, 127A: 362
|
36 |
Zope R R, Mishin Y. Interatomic potentials for atomistic simulations of the Ti-Al system [J]. Phys. Rev., 2003, 68B: 024102
|
37 |
Mehl M J, Papaconstantopoulos D A. Tight-binding study of high-pressure phase transitions in titanium: Alpha to omega and beyond [J]. Europhys. Lett., 2002, 60: 248
doi: 10.1209/epl/i2002-00356-y
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|