Processing math: 100%
Please wait a minute...
金属学报  2024, Vol. 60 Issue (2): 220-230    DOI: 10.11900/0412.1961.2022.00005
  研究论文 本期目录 | 过刊浏览 |
含氧纳米多晶 α-Ti拉伸力学性能与变形机制的分子动力学模拟
任军强1,2, 邵珊1, 王启3, 卢学峰1(), 薛红涛1, 汤富领1
1 兰州理工大学 省部共建有色金属先进加工与再利用国家重点实验室 兰州 730050
2 西安交通大学 金属材料强度国家重点实验室 西安 710049
3 黄淮学院 能源工程学院 驻马店 463000
Molecular Dynamics Simulation of Tensile Mechanical Properties and Deformation Mechanism of Oxygen-Containing Nano-Polycrystalline α-Ti
REN Junqiang1,2, SHAO Shan1, WANG Qi3, LU Xuefeng1(), XUE Hongtao1, TANG Fuling1
1 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2 State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
3 School of Energy Engineering, Huanghuai University, Zhumadian 463000, China
引用本文:

任军强, 邵珊, 王启, 卢学峰, 薛红涛, 汤富领. 含氧纳米多晶 α-Ti拉伸力学性能与变形机制的分子动力学模拟[J]. 金属学报, 2024, 60(2): 220-230.
Junqiang REN, Shan SHAO, Qi WANG, Xuefeng LU, Hongtao XUE, Fuling TANG. Molecular Dynamics Simulation of Tensile Mechanical Properties and Deformation Mechanism of Oxygen-Containing Nano-Polycrystalline α-Ti[J]. Acta Metall Sin, 2024, 60(2): 220-230.

全文: PDF(3762 KB)   HTML
摘要: 

纳米纯Ti对间隙O原子具有强烈的敏感性,O含量可以很大程度上改变其力学性能和变形机制。采用分子动力学方法分别研究了O含量、变形温度、应变速率对纳米多晶α-Ti拉伸性能及变形机制的影响。结果表明,纳米多晶α-Ti的屈服应力随间隙O含量增加而升高。在O含量小于0.3% (原子分数)时,观察到变形孪晶{10ˉ10}<10ˉ12>,该孪晶通过孪晶面上的“带状位错”协调长大;O含量大于等于0.3%时,被激活的滑移系类型向多元化转变,柱面、基面和锥面<c + a>滑移系被激活,位错类型转变为以刃型位错为主。在含O纳米多晶α-Ti中,位错机制和晶界机制辅助塑性变形。晶界迁移率随变形温度和应变速率的增加明显增大。新晶粒形成过程伴随着不稳定的Tihcp→Tibcc→Tihcp相变,这种相变由晶粒的相对旋转所致,且生成新晶粒的数量随着应变速率的增大而增多。通过探索间隙O原子强化的本质,为优化纳米尺度纯Ti力学性能,拓展纯Ti应用范围提供理论依据。

关键词 纳米多晶α-Ti分子动力学位错晶界迁移    
Abstract

Titanium (Ti) has a strong sensitivity to oxygen atoms. Adding interstitial oxygen to pure Ti can greatly alter its mechanical behavior. Oxygen atoms increase strength and hardness while making Ti brittle. Therefore, controlling the oxygen content in Ti is extremely important. To better understand the influence of oxygen on the mechanical behavior of pure Ti, the plastic deformation behavior of nano-polycrystalline α-Ti with different interstitial oxygen content was studied. Molecular dynamic simulations were performed using the second nearest-neighbor modified embedded atom method and the charge equilibration (Qeq) method to investigate the effect of O content, tensile temperature, and strain rate on the tensile mechanical properties and deformation mechanism of nano-polycrystalline α-Ti. Results indicate that the yield stress of nano-polycrystalline α-Ti increases with the increase of interstitial O content. {10ˉ10}<10ˉ12> deformation twin was observed when the O content is less than 0.3%, and twin growth was mediated by well-defined “zonal dislocations” at the twin boundary. Different activated slip systems were transformed and diversified when the O content is larger than 0.3%, that is, the prismatic, basal, and pyramidal <c + a> slip systems were simultaneously activated, and the dislocation type changed to edge dislocations. The plastic deformation of nano-polycrystalline α-Ti was mediated by dislocation and grain boundary. In addition, the mobility of the grain boundary increased significantly with the increase of tensile temperature and strain rate. The formation of new grains was accompanied by Tihcp→Tibcc→Tihcp phase transformation, which was due to the relative rotation of the grains. The number of new grains increased with the increase of strain rate. The current work reveals the mechanical properties and deformation mechanism of nano-polycrystalline α-Ti, which promotes the design, and development of Ti-based nano-structured alloys with superior mechanical properties.

Key wordsnano-polycrystalline α-Ti    molecular dynamics    dislocation    grain boundary migration
收稿日期: 2022-01-04     
ZTFLH:  TG146.2  
基金资助:国家重点研发计划项目(2017YFA0700701);国家自然科学基金项目(52061025);国家自然科学基金项目(51701189);国家自然科学基金项目(51701189);西安交通大学金属材料强度国家重点实验室开放研究项目(20192104);甘肃省教育厅“双一流”科研重点项目(GSSYLXM-03)
通讯作者: 卢学峰,lxfeng@lut.edu.cn,主要从事金属材料性能的模拟研究
Corresponding author: LU Xuefeng, professor, Tel: (0931)2976688, E-mail: lxfeng@lut.edu.cn
作者简介: 任军强,男,1979年生,副研究员,博士
图1  计算模型示意图
Parameterhcp TiDimer OUnit
Ec4.872.56eV
Re0.2920.121nm
α4.71956.8800-
A0.661.44-
t(1)6.800.10-
t(2)-2.000.11-
t(3)-12.000.00-
β(0)2.705.47-
β(1)1.005.30-
β(2)3.005.18-
β(3)1.005.57-
Cmin1.002.00-
Cmax1.442.80-
χ0-1.19210.11eV·e-1
J08.43620.5eV·e-2
ΔE(2)7.975.63eV
ΔE(3)105 a105 aeV
ζ8.323.9nm-1
Z1.4080.00e
表1  纯Ti、O的2NNMEAM + Qeq参数[15]
ParameterTi-OUnit
ΔEc1.5280eV
Re0.20649nm
α7.4455-
d0.01-
Cmin(i j i)1.00-
Cmin(j i j)0.97-
Cmin(i i j)1.46-
Cmin(i j j)1.46-
Cmax(i j i)2.80-
Cmax(j i j)2.51-
Cmax(i i j)2.80-
Cmax(i j j)2.80-
ρ0(O) / ρ0(Ti)12.0-
表2  二元系统Ti-O的2NNMEAM参数[15]
图2  不同条件下纳米多晶α-Ti拉伸应力-应变曲线
图3  多晶Ti-0.1O拉伸后位错缠结引起的加工硬化
图4  不同O含量多晶α-Ti总位错密度随应变变化曲线
图5  不同O含量多晶α-Ti拉伸产生的位错类型(a) Ti (b) Ti-0.1O (c) Ti-0.3O (d) Ti-0.5O (e) Ti-0.7O (f) Ti-1.0O
图6  {101¯1}<101¯2¯>孪晶原子图和“孪晶位错”
图7  300 K下多晶Ti-0.1O拉伸过程中层错的形成
图8  300 K时多晶Ti-0.3O的Tihcp→Tibcc→Tihcp转变过程
图9  不同温度下多晶Ti-0.3O拉伸过程中晶界的运动
图10  不同应变速率下多晶Ti-0.3O中各类原子含量随应变的变化
图11  不同应变速率下多晶Ti-0.3O拉伸过程中晶粒的数量
图12  多晶Ti-0.3O拉伸过程中不稳定相变的产生以及相变机理结构示意图
图13  不同温度下多晶Ti-0.3O拉伸过程bcc原子占比与应变关系
1 Tabie V M, Li C, Saifu W, et al. Mechanical properties of near alpha titanium alloys for high-temperature applications—A review [J]. Aircr. Eng. Aerosp. Technol., 2020, 92: 521
2 Gao P F, Fu M W, Zhan M, et al. Deformation behavior and microstructure evolution of titanium alloys with lamellar microstructure in hot working process: A review [J]. J. Mater. Sci. Technol., 2020, 39: 56
doi: 10.1016/j.jmst.2019.07.052
3 Dong Y H, Chen I W. Onset criterion for flash sintering [J]. J. Am. Ceram. Soc., 2015, 98: 3624
doi: 10.1111/jace.2015.98.issue-12
4 Mahata A, Sikdar K. Molecular dynamics simulation of nanometer scale mechanical properties of hexagonal Mg-Li alloy [J]. J. Magnes. Alloy., 2016, 4: 36
5 Suryanarayana C. Structure and properties of nanocrystalline materials [J]. Bull. Mater. Sci., 1994, 17: 307
doi: 10.1007/BF02745220
6 Hajizadeh K, Alamdari S G, Eghbali B. Stored energy and recrystallization kinetics of ultrafine grained titanium processed by severe plastic deformation [J]. Physica, 2013, 417B: 33
7 Huang Q S, Zhu Q, Chen Y B, et al. Twinning-assisted dynamic adjustment of grain boundary mobility [J]. Nat. Commun., 2021, 12: 6695
doi: 10.1038/s41467-021-27002-3 pmid: 34795234
8 Liu X, Sun W K, Liew K M. Multiscale modeling of crystal plastic deformation of polycrystalline titanium at high temperatures [J]. Comput. Methods Appl. Mech. Eng., 2018, 340: 932
doi: 10.1016/j.cma.2018.06.026
9 Sotniczuk A, Kuczyńska-Zemła D, Królikowski A, et al. Enhancement of the corrosion resistance and mechanical properties of nanocrystalline titanium by low-temperature annealing [J]. Corros. Sci., 2019, 147: 342
doi: 10.1016/j.corsci.2018.11.016
10 Ren J Q, Wang Q, Lu X F, et al. Effect of oxygen content on active deformation systems in pure titanium polycrystals [J]. Mater. Sci. Eng., 2018, A731: 530
11 Conrad H, Okasaki K, Gadgil V, et al. Dislocation structure and the strength of titanium [A]. Electron Microscopy and Structure of Materials [M]. Berkeley: University of California Press, 1972: 438
12 Shechtman D, Brandon D G. Orientation dependent slip in polycrystalline titanium [J]. J. Mater. Sci., 1973, 8: 1233
doi: 10.1007/BF00549337
13 Yu Q, Qi L, Tsuru T, et al. Origin of dramatic oxygen solute strengthening effect in titanium [J]. Science, 2015, 347: 635
doi: 10.1126/science.1260485
14 Voronoi G. Nouvelles applications des paramètres continus à théorie des formes quadratiques. Deuxième Mémoire. Recherches sur les paralléloèdres primitifs [J]. J. Reine Angew. Math., 1909, (136): 67
15 Lee E, Lee K R, Baskes M I, et al. A modified embedded-atom method interatomic potential for ionic systems: 2NNMEAM + Qeq [J]. Phys. Rev., 2016, 93B: 144110
16 Rose J H, Smith J R, Guinea F, et al. Universal features of the equation of state of metals [J]. Phys. Rev., 1984, 29B: 2963
17 Plimpton S. Fast parallel algorithms for short-range molecular dynamics [J]. J. Comput. Phys., 1995, 117: 1
18 Hirel P. Atomsk: A tool for manipulating and converting atomic data files [J]. Comput. Phys. Commun., 2015, 197: 212
doi: 10.1016/j.cpc.2015.07.012
19 Stukowski A. Visualization and analysis of atomistic simulation data with OVITO—The Open Visualization Tool [J]. Modell. Simul. Mater. Sci. Eng., 2010, 18: 015012
20 Li J. AtomEye: An efficient atomistic configuration viewer [J]. Modell. Simul. Mater. Sci. Eng., 2003, 11: 173
doi: 10.1088/0965-0393/11/2/305
21 Sills R B, Cai W. Solute drag on perfect and extended dislocations [J]. Philos. Mag., 2016, 96: 895
doi: 10.1080/14786435.2016.1142677
22 Stukowski A, Bulatov V V, Arsenlis A. Automated identification and indexing of dislocations in crystal interfaces [J]. Modell. Simul. Mater. Sci. Eng., 2012, 20: 085007
23 Ikeda H, Qi Y, Çagin T, et al. Strain rate induced amorphization in metallic nanowires [J]. Phys. Rev. Lett., 1999, 82: 2900
doi: 10.1103/PhysRevLett.82.2900
24 Wen Y H, Zhu Z Z, Zhu R Z. Molecular dynamics study of the mechanical behavior of nickel nanowire: Strain rate effects [J]. Comput. Mater. Sci., 2008, 41: 553
25 Tang W H, Zhang J, Wu J Y, et al. Mechanical properties and enhancement mechanisms of titanium-graphene nanocomposites [J]. Acta Mech. Sin., 2020, 36: 855
doi: 10.1007/s10409-020-00968-x
26 Li B, Ma E. Zonal dislocations mediating {10ˉ11} <10ˉ1ˉ2> twinning in magnesium [J]. Acta. Mater., 2009, 57: 1734
doi: 10.1016/j.actamat.2008.12.016
27 Ren J Q, Sun Q Y, Xiao L, et al. Atomistic simulation of tension-compression asymmetry and its mechanism in titanium single-crystal nanopillars oriented along the [11ˉ20] direction [J]. Comput. Mater. Sci., 2018, 147: 272
doi: 10.1016/j.commatsci.2018.02.029
28 Sakai T, Fine M E. Plastic deformation of Ti-Al single crystals in prismatic slip [J]. Acta. Metall., 1974, 22: 1359
doi: 10.1016/0001-6160(74)90036-4
29 Conrad H. Effect of interstitial solutes on the strength and ductility of titanium [J]. Prog. Mater. Sci., 1981, 26: 123
doi: 10.1016/0079-6425(81)90001-3
30 Wang Y N, Chen S J, Dong X C. Dislocation Theory and Its Application [M]. Beijing: Metallurgical Industry Press, 2007: 101
30 王亚男, 陈树江, 董希淳. 位错理论及其应用 [M]. 北京: 冶金工业出版社, 2007: 101
31 Wang Y B, Li B Q, Sui M L, et al. Deformation-induced grain rotation and growth in nanocrystalline Ni [J]. Appl. Phys. Lett., 2008, 92: 011903
32 Hasan M S, Lee R, Xu W W. Deformation nanomechanics and dislocation quantification at the atomic scale in nanocrystalline magnesium [J]. J. Magnes. Alloy., 2020, 8: 1296
33 Ghaffarian H, Taheri A K, Kang K, et al. Molecular dynamics simulation study of the effect of temperature and grain size on the deformation behavior of polycrystalline cementite [J]. Scr. Mater., 2015, 95: 23
doi: 10.1016/j.scriptamat.2014.09.022
34 Chen P, Wang F X, Li B. Transitory phase transformations during {10ˉ12} twinning in titanium [J]. Acta Mater., 2019, 171: 65
doi: 10.1016/j.actamat.2019.04.002
35 Zhang H, Pan A Q, Hei R Y, et al. An atomistic simulation on the tensile and compressive deformation mechanisms of nano-polycrystalline Ti [J]. Appl. Phys., 2021, 127A: 362
36 Zope R R, Mishin Y. Interatomic potentials for atomistic simulations of the Ti-Al system [J]. Phys. Rev., 2003, 68B: 024102
37 Mehl M J, Papaconstantopoulos D A. Tight-binding study of high-pressure phase transitions in titanium: Alpha to omega and beyond [J]. Europhys. Lett., 2002, 60: 248
doi: 10.1209/epl/i2002-00356-y
[1] 韩卫忠, 卢岩, 张雨衡. 体心立方金属韧脆转变机制研究进展[J]. 金属学报, 2023, 59(3): 335-348.
[2] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
[3] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[4] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[5] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[6] 王江伟, 陈映彬, 祝祺, 洪哲, 张泽. 金属材料的晶界塑性变形机制[J]. 金属学报, 2022, 58(6): 726-745.
[7] 李海勇, 李赛毅. Al <111>对称倾斜晶界迁移行为温度相关性的分子动力学研究[J]. 金属学报, 2022, 58(2): 250-256.
[8] 武晓雷, 朱运田. 异构金属材料及其塑性变形与应变硬化[J]. 金属学报, 2022, 58(11): 1349-1359.
[9] 安旭东, 朱特, 王茜茜, 宋亚敏, 刘进洋, 张鹏, 张钊宽, 万明攀, 曹兴忠. 奥氏体316不锈钢中位错与氢的相互作用机理[J]. 金属学报, 2021, 57(7): 913-920.
[10] 兰亮云, 孔祥伟, 邱春林, 杜林秀. 基于多尺度力学实验的氢脆现象的最新研究进展[J]. 金属学报, 2021, 57(7): 845-859.
[11] 石增敏, 梁静宇, 李箭, 王毛球, 方子帆. 板条马氏体拉伸塑性行为的原位分析[J]. 金属学报, 2021, 57(5): 595-604.
[12] 梁晋洁, 高宁, 李玉红. 体心立方Fe中微裂纹与间隙型位错环相互作用的分子动力学模拟[J]. 金属学报, 2020, 56(9): 1286-1294.
[13] 李美霖, 李赛毅. 金属Mg二阶锥面<c+a>刃位错运动特性的分子动力学模拟[J]. 金属学报, 2020, 56(5): 795-800.
[14] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[15] 李源才, 江五贵, 周宇. 纳米孔洞对单晶/多晶Ni复合体拉伸性能的影响[J]. 金属学报, 2020, 56(5): 776-784.