Please wait a minute...
金属学报  2022, Vol. 58 Issue (11): 1349-1359    DOI: 10.11900/0412.1961.2022.00327
  综述 本期目录 | 过刊浏览 |
异构金属材料及其塑性变形与应变硬化
武晓雷1(), 朱运田2,3()
1.中国科学院力学研究所 非线性力学国家重点实验室 北京 100190
2.香港城市大学 材料科学与工程系 香港 999077
3.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
Heterostructured Metallic Materials: Plastic Deformation and Strain Hardening
WU Xiaolei1(), ZHU Yuntian2,3()
1.State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
2.Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong 999077, China
3.Shenyang National Laboratory of Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

武晓雷, 朱运田. 异构金属材料及其塑性变形与应变硬化[J]. 金属学报, 2022, 58(11): 1349-1359.
Xiaolei WU, Yuntian ZHU. Heterostructured Metallic Materials: Plastic Deformation and Strain Hardening[J]. Acta Metall Sin, 2022, 58(11): 1349-1359.

全文: PDF(1875 KB)   HTML
摘要: 

金属材料异构(heterostructure)是将具有显著流变应力差异的软硬相间区域作为基元进行有序构筑而成的微观组织,是旨在提高应变硬化能力和拉伸塑性的微结构设计策略,迄今应用于各种金属结构材料并获得了强度与塑性/韧性等力学性能的优异匹配。异构策略的出发点是其特征的力学响应,即塑性变形时在异构基元界面形成的应变梯度,异构的特征应力应变响应是力学迟滞环。相比均质结构中主导的林位错塑性和林硬化,异构为了协调界面应变梯度而产生几何必需位错,新增了基于几何必需位错的异质塑性变形并引起额外的应变硬化与额外的强化。本文综述了近期异构金属材料的研究进展,首先定义了异构中基元并据此把异构分类为基元异构、亚基元异构以及复合异构,随后分析并讨论了异构塑性变形时界面和位错等微结构演化,以及异质塑性变形、应变硬化和强化行为,最后展望了异构提升宏观力学性能匹配的潜力。

关键词 异构异构基元应变梯度几何必需位错应变硬化塑性梯度结构层状结构    
Abstract

Strong and tough metallic materials are desired for light-weight structural applications in transportation and aerospace industries. Recently, heterostructures have been found to possess unprecedented strength-and-ductility synergy, which is until now considered impossible to achieve. Heterostructured metallic materials comprise heterogeneous zones with dramatic variations (> 100%) particularly in mechanical properties. The interaction in these hetero-zones produces a synergistic effect wherein the integrated property exceeds the prediction by the rule-of-mixtures. More importantly, the heterostructured materials can be produced by current industrial facilities at large scale and low cost. The superior properties of heterostructured materials are attributed to the heterodeformation induced (HDI) strengthening and strain hardening, which is produced by the piling-up of geometrically necessary dislocations (GNDs). These GNDs are needed to accommodate the strain gradient near hetero-zone boundaries, across which there is high mechanical incompatibility and strain partitioning. This paper classifies the types of heterostructures and delineates the deformation behavior and mechanisms of heterostructured materials.

Key wordsheterostructure    heterostructure unit    strain gradient    geometrically necessary dislocation    strain hardening    ductility    gradient structure    lamellar structure
收稿日期: 2022-07-04     
ZTFLH:  TG14  
基金资助:国家重点研发计划项目(2017YFA0204402/3);国家重点研发计划项目(2019YFA0209902);国家自然科学基金项目(11988102);国家自然科学基金项目(11972350);国家自然科学基金项目(51931003);中国科学院先导专项项目(XDB22040503)
作者简介: 朱运田, y.zhu@cityu.edu.hk,从事金属结构材料变形机理及性能研究
武晓雷, xlwu@imech.ac.cn,从事金属结构材料的力学行为与微结构机理研究;
武晓雷,男,1965年生,研究员,博士
图1  金属结构材料的异构:基元异构(分别为梯度结构和层状结构)、亚基元异构及复合异构
图2  异构基元及其微观设计
图3  异构基元的2个特征力学响应:应变梯度和力学迟滞环[27,52,55]
图4  异构背应力的几何必需位错塞积模型[24,53]
图5  位错湮灭/形成以及位错塞积[33]
图6  异构的应变硬化率
图7  异构屈服强度与拉伸均匀塑性之间的协同关系
1 Lu K. The future of metals [J]. Science, 2010, 328: 319
doi: 10.1126/science.1185866 pmid: 20395503
2 Ashby M F. Materials Selection in Mechanical Design [M]. 3rd Ed., Oxford: Elsevier, 2005: 1
3 Valiev R Z, Alexandrov I V, Zhu Y T, et al. Paradox of strength and ductility in metals processed bysevere plastic deformation [J]. J. Mater. Res., 2002, 17: 5
doi: 10.1557/JMR.2002.0002
4 Lu K. Stabilizing nanostructures in metals using grain and twin boundary architectures [J]. Nat. Rev. Mater., 2016, 1: 16019
doi: 10.1038/natrevmats.2016.19
5 Lu K, Lu L, Suresh S. Strengthening materials by engineering coherent Internal boundaries at the nanoscale [J]. Science, 2009, 324: 349
doi: 10.1126/science.1159610 pmid: 19372422
6 Koch C C, Morris D G, Lu K, et al. Ductility of nanostructured materials [J]. MRS Bull., 1999, 24: 54
7 Ovid'ko I A, Valiev R Z, Zhu Y T. Review on superior strength and enhanced ductility of metallic nanomaterials [J]. Prog. Mater. Sci., 2018, 94: 462
doi: 10.1016/j.pmatsci.2018.02.002
8 Ma E. Instabilities and ductility of nanocrystalline and ultrafine-grained metals [J]. Scr. Mater., 2003, 49: 663
doi: 10.1016/S1359-6462(03)00396-8
9 Zhu Y T, Liao X Z. Nanostructured metals—Retaining ductility [J]. Nat. Mater., 2004, 3: 351
doi: 10.1038/nmat1141
10 An X H, Wu S D, Wang Z G, et al. Significance of stacking fault energy in bulk nanostructured materials: Insights from Cu and its binary alloys as model systems [J]. Prog. Mater. Sci., 2019, 101: 1
doi: 10.1016/j.pmatsci.2018.11.001
11 Sun L G, Wu G, Wang Q, et al. Nanostructural metallic materials: Structures and mechanical properties [J]. Mater. Today, 2020, 38: 114
doi: 10.1016/j.mattod.2020.04.005
12 Wu H, Fan G H. An overview of tailoring strain delocalization for strength-ductility synergy [J]. Prog. Mater. Sci., 2020, 113: 100675
doi: 10.1016/j.pmatsci.2020.100675
13 Fang T H, Li W L, Tao N R, et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper [J]. Science, 2011, 331: 1587
doi: 10.1126/science.1200177 pmid: 21330487
14 Wang Y M, Chen M W, Zhou F H, et al. High tensile ductility in a nanostructured metal [J]. Nature, 2002, 419: 912
doi: 10.1038/nature01133
15 He B B, Hu B, Yen H W, et al. High dislocation density-induced large ductility in deformed and partitioned steels [J]. Science, 2017, 357: 1029
doi: 10.1126/science.aan0177 pmid: 28839008
16 Huang X X, Hansen N, Tsuji N. Hardening by annealing and softening by deformation in nanostructured metals [J]. Science, 2006, 312: 249
pmid: 16614217
17 Lu L, Shen Y F, Chen X H, et al. Ultrahigh strength and high electrical conductivity in copper [J]. Science, 2004, 304: 422
pmid: 15031435
18 Sun S J, Tian Y Z, Lin H R, et al. Enhanced strength and ductility of bulk CoCrFeMnNi high entropy alloy having fully recrystallized ultrafine-grained structure [J]. Mater. Des., 2017, 133: 122
doi: 10.1016/j.matdes.2017.07.054
19 Liu G, Zhang G J, Jiang F, et al. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility [J]. Nat. Mater., 2013, 12: 344
doi: 10.1038/nmat3544 pmid: 23353630
20 Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
doi: 10.1038/nature17981
21 Zhao Y H, Liao X Z, Cheng S, et al. Simultaneously increasing the ductility and strength of nanostructured alloys [J]. Adv. Mater., 2006, 18: 2280
doi: 10.1002/adma.200600310
22 Yang M X, Yuan F P, Xie Q G, et al. Strain hardening in Fe-16Mn-10Al-0.86C-5Ni high specific strength steel [J]. Acta Mater., 2016, 109: 213
doi: 10.1016/j.actamat.2016.02.044
23 Cottrell A H. Commentary. A brief view of work hardening [J]. Dislocat. Solids, 2002, 11: vii
24 Wu X L, Yang M X, Yuan F P, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility [J]. Proc. Natl. Acad. Sci. USA, 2015, 112: 14501
doi: 10.1073/pnas.1517193112
25 Wu X L, Zhu Y T. Heterogeneous materials: A new class of materials with unprecedented mechanical properties [J]. Mater. Res. Lett., 2017, 5: 527
doi: 10.1080/21663831.2017.1343208
26 Zhu Y T, Wu X L. Perspective on hetero-deformation induced (HDI) hardening and back stress [J]. Mater. Res. Lett., 2019, 7: 393
doi: 10.1080/21663831.2019.1616331
27 Zhu Y T, Ameyama K, Anderson P M, et al. Heterostructured materials: Superior properties from hetero-zone interaction [J]. Mater. Res. Lett., 2021, 9: 1
doi: 10.1080/21663831.2020.1796836
28 Ashby M F. The deformation of plastically non-homogeneous materials [J]. Philos. Mag., 1970, 21: 399
29 Gao H J, Huang Y G. Geometrically necessary dislocation and size-dependent plasticity [J]. Scr. Mater., 2003, 48: 113
doi: 10.1016/S1359-6462(02)00329-9
30 Gao H, Huang Y, Nix W D, et al. Mechanism-based strain gradient plasticity—I. Theory [J]. J. Mech. Phys. Solids, 1999, 47: 1239
doi: 10.1016/S0022-5096(98)00103-3
31 Lu K. Making strong nanomaterials ductile with gradients [J]. Science, 2014, 345: 1455
doi: 10.1126/science.1255940 pmid: 25237091
32 Chen A Y, Li D F, Zhang J B, et al. Make nanostructured metal exceptionally tough by introducing non-localized fracture behaviors [J]. Scr. Mater., 2008, 59: 579
doi: 10.1016/j.scriptamat.2008.04.048
33 Wu X L, Jiang P, Chen L, et al. Extraordinary strain hardening by gradient structure [J]. Proc. Natl. Acad. Sci. USA, 2014, 111: 7197
doi: 10.1073/pnas.1324069111
34 Shao C W, Zhang P, Zhu Y K, et al. Simultaneous improvement of strength and plasticity: Additional work-hardening from gradient microstructure [J]. Acta Mater., 2018, 145: 413
doi: 10.1016/j.actamat.2017.12.028
35 Li J J, Soh A K. Modeling of the plastic deformation of nanostructured materials with grain size gradient [J]. Int. J. Plast., 2012, 39: 88
doi: 10.1016/j.ijplas.2012.06.004
36 Roumina R, Embury J D, Bouaziz O, et al. Mechanical behavior of a compositionally graded 300M steel [J]. Mater. Sci. Eng., 2013, A578: 140
37 Lu K, Lu J. Surface nanocrystallization (SNC) of metallic materials—Presentation of the concept behind a new approach [J]. J. Mater. Sci. Technol., 1999, 15: 193
doi: 10.1179/026708399101505581
38 Cheng Z, Zhou H F, Lu Q H, et al. Extra strengthening and work hardening in gradient nanotwinned metals [J]. Science, 2018, 362: eaau1925
doi: 10.1126/science.aau1925
39 Pan Q S, Zhang L X, Feng R, et al. Gradient cell-structured high-entropy alloy with exceptional strength and ductility [J]. Science, 2021, 374: 984
doi: 10.1126/science.abj8114
40 Yang M X, Yan D S, Yuan F P, et al. Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength [J]. Proc. Natl. Acad. Sci. USA, 2018, 115: 7224
doi: 10.1073/pnas.1807817115
41 Du X H, Li W P, Chang H T, et al. Dual heterogeneous structures lead to ultrahigh strength and uniform ductility in a Co-Cr-Ni medium-entropy alloy [J]. Nat. Commun., 2020, 11: 2390
doi: 10.1038/s41467-020-16085-z pmid: 32404913
42 Mughrabi H. Dislocation wall and cell structures and long-range internal stresses in deformed metal crystals [J]. Acta Metall., 1983, 31: 1367
doi: 10.1016/0001-6160(83)90007-X
43 Gibeling J G, Nix W D. A numerical study of long range internal stresses associated with subgrain boundaries [J]. Acta Metall., 1980, 28: 1743
doi: 10.1016/0001-6160(80)90027-9
44 Llorca J, Needleman A, Suresh S. The bauschinger effect in whisker-reinforced metal-matrix composites [J]. Scr. Metall. Mater., 1990, 24: 1203
doi: 10.1016/0956-716X(90)90328-E
45 Kuhlmann-Wilsdorf D, Laird C. Dislocation behavior in fatigue II. Friction stress and back stress as inferred from an analysis of hysteresis loops [J]. Mater. Sci. Eng., 1979, 37: 111
doi: 10.1016/0025-5416(79)90074-0
46 Qin S, Yang M X, Jiang P, et al. Designing structures with combined gradients of grain size and precipitation in high entropy alloys for simultaneous improvement of strength and ductility [J]. Acta Mater., 2022, 230: 117847
doi: 10.1016/j.actamat.2022.117847
47 Wu X L, Zhu Y T, Lu K. Ductility and strain hardening in gradient and lamellar structured materials [J]. Scr. Mater., 2020, 186: 321
doi: 10.1016/j.scriptamat.2020.05.025
48 Wu X L, Zhu Y T. Gradient and lamellar heterostructures for superior mechanical properties [J]. MRS Bull., 2021, 46: 244
49 Li J G, Zhang Q, Huang R R, et al. Towards understanding the structure-property relationships of heterogeneous-structured materials [J]. Scr. Mater., 2020, 186: 304
doi: 10.1016/j.scriptamat.2020.05.013
50 Li X Y, Lu L, Li J G, et al. Mechanical properties and deformation mechanisms of gradient nanostructured metals and alloys [J]. Nat. Rev. Mater., 2020, 5: 706
doi: 10.1038/s41578-020-0212-2
51 Lu K. Gradient nanostructured materials [J]. Acta Metall. Sin., 2015, 51: 1
doi: 10.11900/0412.1961.2014.00395
51 卢 柯. 梯度纳米结构材料 [J]. 金属学报, 2015, 51: 1
52 Huang C X, Wang Y F, Ma X L, et al. Interface affected zone for optimal strength and ductility in heterogeneous laminate [J]. Mater. Today, 2018, 21: 713
doi: 10.1016/j.mattod.2018.03.006
53 Zhou H, Huang C X, Sha X C, et al. In-situ observation of dislocation dynamics near heterostructured interfaces [J]. Mater. Res. Lett., 2019, 7: 376
doi: 10.1080/21663831.2019.1616330
54 Li J C M, Chau C C. Internal stresses in plasticity, microplasticity and ductile fracture [J]. Mater. Sci. Eng., 2006, A421: 103
55 Yang M X, Pan Y, Yuan F P, et al. Back stress strengthening and strain hardening in gradient structure [J]. Mater. Res. Lett., 2016, 4: 145
doi: 10.1080/21663831.2016.1153004
56 Orowan E. Causes and effects of internal stresses [A]. Internal Stress and Fatigue in Metals [M]. London: Elsevier, 1959: 59
57 Osborne P W. On the nature of the long-range back stress in copper [J]. Acta Metall., 1964, 12: 747
doi: 10.1016/0001-6160(64)90226-3
58 Mughrabi H. On the role of strain gradients and long-range internal stresses in the composite model of crystal plasticity [J]. Mater. Sci. Eng., 2001, A317: 171
59 Wu X L, Jiang P, Chen L, et al. Synergetic strengthening by gradient structure [J]. Mater. Res. Lett., 2014, 2: 185
doi: 10.1080/21663831.2014.935821
60 Ma E, Zhu T. Towards strength-ductility synergy through the design of heterogeneous nanostructures in metals [J]. Mater. Today, 2017, 20: 323
doi: 10.1016/j.mattod.2017.02.003
61 Ma E, Wu X L. Tailoring heterogeneities in high-entropy alloys to promote strength-ductility synergy [J]. Nat. Commun., 2019, 10: 5623
doi: 10.1038/s41467-019-13311-1 pmid: 31819051
62 Wu X L, Yang M X, Yuan F P, et al. Combining gradient structure and TRIP effect to produce austenite stainless steel with high strength and ductility [J]. Acta Mater., 2016, 112: 337
doi: 10.1016/j.actamat.2016.04.045
63 Zhang S D, Yang M X, Yuan F P, et al. Extraordinary fracture toughness in nickel induced by heterogeneous grain structure [J]. Mater. Sci. Eng., 2022, A830: 142313
64 Cao R Q, Yu Q, Pan J, et al. On the exceptional damage-tolerance of gradient metallic materials [J]. Mater. Today, 2020, 32: 94
doi: 10.1016/j.mattod.2019.09.023
65 Niu G, Zurob H S, Misra R D K, et al. Superior fracture toughness in a high-strength austenitic steel with heterogeneous lamellar microstructure [J]. Acta Mater., 2022, 226: 117642
doi: 10.1016/j.actamat.2022.117642
66 Zhao H Z, You Z S, Tao N R, et al. Anisotropic toughening of nanotwin bundles in the heterogeneous nanostructured Cu [J]. Acta Mater., 2022, 228: 117748
doi: 10.1016/j.actamat.2022.117748
67 Xiong L, You Z S, Qu S D, et al. Fracture behavior of heterogeneous nanostructured 316L austenitic stainless steel with nanotwin bundles [J]. Acta Mater., 2018, 150: 130
doi: 10.1016/j.actamat.2018.02.065
68 Roland T, Retraint D, Lu K, et al. Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment [J]. Scr. Mater., 2006, 54: 1949
doi: 10.1016/j.scriptamat.2006.01.049
69 Long J Z, Pan Q S, Tao N R, et al. Improved fatigue resistance of gradient nanograined Cu [J]. Acta Mater., 2019, 166: 56
doi: 10.1016/j.actamat.2018.12.018
70 Shao C W, Zhang P, Liu R, et al. Low-cycle and extremely-low-cycle fatigue behaviors of high-Mn austenitic TRIP/TWIP alloys: Property evaluation, damage mechanisms and life prediction [J]. Acta Mater., 2016, 103: 781
doi: 10.1016/j.actamat.2015.11.015
71 Zhou X, Li X Y, Lu K. Enhanced thermal stability of nanograined metals below a critical grain size [J]. Sci. Adv., 2018, 360: 526
72 Chen X, Han Z, Li X Y, et al. Lowering coefficient of friction in Cu alloys with stable gradient nanostructures [J]. Sci. Adv., 2016, 2: e1601942
doi: 10.1126/sciadv.1601942
73 Wang H T, Tao N R, Lu K. Strengthening an austenitic Fe-Mn steel using nanotwinned austenitic grains [J]. Acta Mater., 2012, 60: 4027
doi: 10.1016/j.actamat.2012.03.035
74 Cheng Z, Bu L F, Zhang Y, et al. Unraveling the origin of extra strengthening in gradient nanotwinned metals [J]. Proc. Natl. Acad. Sci. USA, 2022, 119: e2116808119
doi: 10.1073/pnas.2116808119
75 Brown L M, Stobbs W M. The work-hardening of copper-silica [J]. Philos. Mag., 1971, 23: 1185
doi: 10.1080/14786437108217405
76 Eshelby J D. The determination of the elastic field of an ellipsoidal inclusion, and related problems [J]. Proc. Roy. Soc., 1957, 241A: 376
77 Atkinson J D, Brown L M, Stobbs W M. The work-hardening of copper-silica: IV. The Bauschinger effect and plastic relaxation [J]. Philos. Mag., 1974, 30: 1247
doi: 10.1080/14786437408207280
78 Chen X F, Wang Q, Cheng Z Y, et al. Direct observation of chemical short-range order in a medium-entropy alloy [J]. Nature, 2021, 592: 712
doi: 10.1038/s41586-021-03428-z
79 Wang J, Jiang P, Yuan F P, et al. Chemical medium-range order in a medium-entropy alloy [J]. Nat. Commun., 2022, 13: 1021
doi: 10.1038/s41467-022-28687-w pmid: 35197473
80 Lei Z F, Liu X J, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes [J]. Nature, 2018, 563: 546
doi: 10.1038/s41586-018-0685-y
81 Li Q J, Sheng H, Ma E. Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways [J]. Nat. Commun., 2019, 10: 3563
doi: 10.1038/s41467-019-11464-7
82 Li J J, Chen S H, Weng G J, et al. A micromechanical model for heterogeneous nanograined metals with shape effect of inclusions and geometrically necessary dislocation pileups at the domain boundary [J]. Int. J. Plast., 2021, 144: 103024
doi: 10.1016/j.ijplas.2021.103024
83 Li J J, Soh A K. Enhanced ductility of surface nano-crystallized materials by modulating grain size gradient [J]. Modell. Simul. Mater. Sci. Eng., 2012, 20: 085002
84 Hughes D A, Hansen N, Bammann D J. Geometrically necessary boundaries, incidental dislocation boundaries and geometrically necessary dislocations [J]. Scr. Mater., 2003, 48: 147
doi: 10.1016/S1359-6462(02)00358-5
85 Wei Y G, Xu G S. A multiscale model for the ductile fracture of crystalline materials [J]. Int. J. Plast., 2005, 21: 2123
doi: 10.1016/j.ijplas.2005.04.003
86 Wu X L, Yang M X, Li R G, et al. Plastic accommodation during tensile deformation of gradient structure [J]. Sci. China Mater., 2021, 64: 1534
doi: 10.1007/s40843-020-1545-2
87 Wang Y F, Wang M S, Fang X T, et al. Extra strengthening in a coarse/ultrafine grained laminate: Role of gradient interfaces [J]. Int. J. Plast., 2019, 123: 196
doi: 10.1016/j.ijplas.2019.07.019
88 Wang Y F, Huang C X, Li Y S, et al. Dense dispersed shear bands in gradient-structured Ni [J]. Int. J. Plast., 2020, 124: 186
doi: 10.1016/j.ijplas.2019.08.012
89 Liu X R, Feng H, Wang J, et al. Mechanical property comparisons between CrCoNi medium-entropy alloy and 316 stainless steels [J]. J. Mater. Sci. Technol., 2022, 108: 256
doi: 10.1016/j.jmst.2021.08.057
90 Shi P J, Ren W L, Zheng T X, et al. Enhanced strength-ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae [J]. Nat. Commun., 2019, 10: 489
doi: 10.1038/s41467-019-08460-2 pmid: 30700708
91 Zhang C, Zhu C Y, Cao P H, et al. Aged metastable high-entropy alloys with heterogeneous lamella structure for superior strength-ductility synergy [J]. Acta Mater., 2020, 199: 602
doi: 10.1016/j.actamat.2020.08.043
92 Lu W J, Luo X, Ning D, et al. Excellent strength-ductility synergy properties of gradient nano-grained structural CrCoNi medium-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 112: 195
doi: 10.1016/j.jmst.2021.09.058
93 Slone C E, Miao J, George E P, et al. Achieving ultra-high strength and ductility in equiatomic CrCoNi with partially recrystallized microstructures [J]. Acta Mater., 2019, 165: 496
doi: 10.1016/j.actamat.2018.12.015
94 Shukla S, Choudhuri D, Wang T H, et al. Hierarchical features infused heterogeneous grain structure for extraordinary strength-ductility synergy [J]. Mater. Res. Lett., 2018, 6: 676
doi: 10.1080/21663831.2018.1538023
95 He F, Yang Z S, Liu S F, et al. Strain partitioning enables excellent tensile ductility in precipitated heterogeneous high-entropy alloys with gigapascal yield strength [J]. Int. J. Plast., 2021, 144: 103022
doi: 10.1016/j.ijplas.2021.103022
96 Xiang Y, Vlassak J J. Bauschinger effect in thin metal films [J]. Scr. Mater., 2005, 53: 177
doi: 10.1016/j.scriptamat.2005.03.048
97 Feaugas X. On the origin of the tensile flow stress in the stainless steel AISI 316L at 300 K: Back stress and effective stress [J]. Acta Mater., 1999, 47: 3617
doi: 10.1016/S1359-6454(99)00222-0
98 Nix W D, Gao H J. Indentation size effects in crystalline materials: A law for strain gradient plasticity [J]. J. Mech. Phys. Solids, 1998, 46: 411
doi: 10.1016/S0022-5096(97)00086-0
99 Yuan F P, Yan D S, Sun J D, et al. Ductility by shear band delocalization in the nano-layer of gradient structure [J]. Mater. Res. Lett., 2019, 7: 12
doi: 10.1080/21663831.2018.1546238
100 Wilson D V, Bate P S. Influences of cell walls and grain boundaries on transient responses of an IF steel to changes in strain path [J]. Acta Metall. Mater., 1994, 42: 1099
doi: 10.1016/0956-7151(94)90127-9
101 Asaro R J. Micromechanics of crystals and polycrystals [J]. Adv. Appl. Mech., 1983, 23: 1
102 Wei Y G, Wang X Z, Zhao M H. Size effect measurement and characterization in nanoindentation test [J]. J. Mater. Res., 2004, 19: 208
doi: 10.1557/jmr.2004.19.1.208
103 Wei Y G, Wu X L. A trans-scale linkage model and application to analyses of nanocrystalline Al-alloy material [A]. Advances in Nonlinear Mechanical Properties of Materilas [C]. Beijing: China Machine Press, 2021: 62
103 Wei Y G, Wu X L. A trans-scale linkage model and application to analyses of nanocrystalline Al-alloy material [A]. 材料的非线性力学性能研究进展 [C]. 北京: 机械工业出版社, 2021: 62
104 Tian Y Z, Zhao L J, Park N, et al. Revealing the deformation mechanisms of Cu-Al alloys with high strength and good ductility [J]. Acta Mater., 2016, 110: 61
doi: 10.1016/j.actamat.2016.03.015
105 Li J J, Weng G J, Chen S H, et al. On strain hardening mechanism in gradient nanostructures [J]. Int. J. Plast., 2017, 88: 89
doi: 10.1016/j.ijplas.2016.10.003
106 Li J J, Lu W J, Chen S H, et al. Revealing extra strengthening and strain hardening in heterogeneous two-phase nanostructures [J]. Int. J. Plast., 2020, 126: 102626
doi: 10.1016/j.ijplas.2019.11.005
107 Li Z M, Tasan C C, Springer H, et al. Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys [J]. Sci. Rep., 2017, 7: 40704
doi: 10.1038/srep40704 pmid: 28079175
108 He J Y, Liu W H, Wang H, et al. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system [J]. Acta Mater., 2014, 62: 105
doi: 10.1016/j.actamat.2013.09.037
109 Cao F H, Wang Y J, Dai L H. Novel atomic-scale mechanism of incipient plasticity in a chemically complex CrCoNi medium-entropy alloy associated with inhomogeneity in local chemical environment [J]. Acta Mater., 2020, 194: 283
doi: 10.1016/j.actamat.2020.05.042
110 Ding Q Q, Zhang Y, Chen X, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys [J]. Nature, 2019, 574: 223
doi: 10.1038/s41586-019-1617-1
111 Liu L, Yu Q, Wang Z, et al. Making ultrastrong steel tough by grain-boundary delamination [J]. Science, 2020, 368: 1347
doi: 10.1126/science.aba9413 pmid: 32381592
112 Jiang S H, Wang H, Wu Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation [J]. Nature, 2017, 544: 460
doi: 10.1038/nature22032
113 Ma Y, Yang M X, Jiang P, et al. Plastic deformation mechanisms in a severely deformed Fe-Ni-Al-C alloy with superior tensile properties [J]. Sci. Rep., 2017, 7: 15619
doi: 10.1038/s41598-017-15905-5 pmid: 29142214
114 Furuta T, Kuramoto S, Ohsuna T, et al. Die-hard plastic deformation behavior in an ultrahigh-strength Fe-Ni-Al-C alloy [J]. Scr. Mater., 2015, 101: 87
doi: 10.1016/j.scriptamat.2015.01.025
[1] 徐永生, 张卫刚, 徐凌超, 但文蛟. 铁素体晶间变形协调与硬化行为模拟研究[J]. 金属学报, 2023, 59(8): 1042-1050.
[2] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[3] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[4] 张哲峰, 李克强, 蔡拓, 李鹏, 张振军, 刘睿, 杨金波, 张鹏. 层错能对面心立方金属形变机制与力学性能的影响[J]. 金属学报, 2023, 59(4): 467-477.
[5] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[6] 王楠, 陈永楠, 赵秦阳, 武刚, 张震, 罗金恒. 应变速率对X80管线钢铁素体/贝氏体应变分配行为的影响[J]. 金属学报, 2023, 59(10): 1299-1310.
[7] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[8] 高钰璧, 丁雨田, 李海峰, 董洪标, 张瑞尧, 李军, 罗全顺. 变形速率对GH3625合金弹-塑性变形行为的影响[J]. 金属学报, 2022, 58(5): 695-708.
[9] 李民, 李昊泽, 王继杰, 马颖澈, 刘奎. 稀土Ce对薄带连铸无取向6.5%Si钢组织、高温拉伸性能和断裂模式的影响[J]. 金属学报, 2022, 58(5): 637-648.
[10] 张新房, 向思奇, 易坤, 郭敬东. 脉冲电流调控金属固体中的残余应力[J]. 金属学报, 2022, 58(5): 581-598.
[11] 郭祥如, 申俊杰. 孪生诱发软化与强化效应的Cu晶体塑性行为模拟[J]. 金属学报, 2022, 58(3): 375-384.
[12] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[13] 郭昊函, 杨杰, 刘芳, 卢荣生. GH4169合金拘束相关的疲劳裂纹萌生寿命[J]. 金属学报, 2022, 58(12): 1633-1644.
[14] 胡晨, 潘帅, 黄明欣. 高强高韧异质结构温轧TWIP[J]. 金属学报, 2022, 58(11): 1519-1526.
[15] 罗旋, 韩芳, 黄天林, 吴桂林, 黄晓旭. 层状异构Mg-3Gd合金的微观组织和力学性能[J]. 金属学报, 2022, 58(11): 1489-1496.