|
|
异构金属材料及其塑性变形与应变硬化 |
武晓雷1( ), 朱运田2,3( ) |
1.中国科学院力学研究所 非线性力学国家重点实验室 北京 100190 2.香港城市大学 材料科学与工程系 香港 999077 3.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016 |
|
Heterostructured Metallic Materials: Plastic Deformation and Strain Hardening |
WU Xiaolei1( ), ZHU Yuntian2,3( ) |
1.State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China 2.Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong 999077, China 3.Shenyang National Laboratory of Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
武晓雷, 朱运田. 异构金属材料及其塑性变形与应变硬化[J]. 金属学报, 2022, 58(11): 1349-1359.
Xiaolei WU,
Yuntian ZHU.
Heterostructured Metallic Materials: Plastic Deformation and Strain Hardening[J]. Acta Metall Sin, 2022, 58(11): 1349-1359.
1 |
Lu K. The future of metals [J]. Science, 2010, 328: 319
doi: 10.1126/science.1185866
pmid: 20395503
|
2 |
Ashby M F. Materials Selection in Mechanical Design [M]. 3rd Ed., Oxford: Elsevier, 2005: 1
|
3 |
Valiev R Z, Alexandrov I V, Zhu Y T, et al. Paradox of strength and ductility in metals processed bysevere plastic deformation [J]. J. Mater. Res., 2002, 17: 5
doi: 10.1557/JMR.2002.0002
|
4 |
Lu K. Stabilizing nanostructures in metals using grain and twin boundary architectures [J]. Nat. Rev. Mater., 2016, 1: 16019
doi: 10.1038/natrevmats.2016.19
|
5 |
Lu K, Lu L, Suresh S. Strengthening materials by engineering coherent Internal boundaries at the nanoscale [J]. Science, 2009, 324: 349
doi: 10.1126/science.1159610
pmid: 19372422
|
6 |
Koch C C, Morris D G, Lu K, et al. Ductility of nanostructured materials [J]. MRS Bull., 1999, 24: 54
|
7 |
Ovid'ko I A, Valiev R Z, Zhu Y T. Review on superior strength and enhanced ductility of metallic nanomaterials [J]. Prog. Mater. Sci., 2018, 94: 462
doi: 10.1016/j.pmatsci.2018.02.002
|
8 |
Ma E. Instabilities and ductility of nanocrystalline and ultrafine-grained metals [J]. Scr. Mater., 2003, 49: 663
doi: 10.1016/S1359-6462(03)00396-8
|
9 |
Zhu Y T, Liao X Z. Nanostructured metals—Retaining ductility [J]. Nat. Mater., 2004, 3: 351
doi: 10.1038/nmat1141
|
10 |
An X H, Wu S D, Wang Z G, et al. Significance of stacking fault energy in bulk nanostructured materials: Insights from Cu and its binary alloys as model systems [J]. Prog. Mater. Sci., 2019, 101: 1
doi: 10.1016/j.pmatsci.2018.11.001
|
11 |
Sun L G, Wu G, Wang Q, et al. Nanostructural metallic materials: Structures and mechanical properties [J]. Mater. Today, 2020, 38: 114
doi: 10.1016/j.mattod.2020.04.005
|
12 |
Wu H, Fan G H. An overview of tailoring strain delocalization for strength-ductility synergy [J]. Prog. Mater. Sci., 2020, 113: 100675
doi: 10.1016/j.pmatsci.2020.100675
|
13 |
Fang T H, Li W L, Tao N R, et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper [J]. Science, 2011, 331: 1587
doi: 10.1126/science.1200177
pmid: 21330487
|
14 |
Wang Y M, Chen M W, Zhou F H, et al. High tensile ductility in a nanostructured metal [J]. Nature, 2002, 419: 912
doi: 10.1038/nature01133
|
15 |
He B B, Hu B, Yen H W, et al. High dislocation density-induced large ductility in deformed and partitioned steels [J]. Science, 2017, 357: 1029
doi: 10.1126/science.aan0177
pmid: 28839008
|
16 |
Huang X X, Hansen N, Tsuji N. Hardening by annealing and softening by deformation in nanostructured metals [J]. Science, 2006, 312: 249
pmid: 16614217
|
17 |
Lu L, Shen Y F, Chen X H, et al. Ultrahigh strength and high electrical conductivity in copper [J]. Science, 2004, 304: 422
pmid: 15031435
|
18 |
Sun S J, Tian Y Z, Lin H R, et al. Enhanced strength and ductility of bulk CoCrFeMnNi high entropy alloy having fully recrystallized ultrafine-grained structure [J]. Mater. Des., 2017, 133: 122
doi: 10.1016/j.matdes.2017.07.054
|
19 |
Liu G, Zhang G J, Jiang F, et al. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility [J]. Nat. Mater., 2013, 12: 344
doi: 10.1038/nmat3544
pmid: 23353630
|
20 |
Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
doi: 10.1038/nature17981
|
21 |
Zhao Y H, Liao X Z, Cheng S, et al. Simultaneously increasing the ductility and strength of nanostructured alloys [J]. Adv. Mater., 2006, 18: 2280
doi: 10.1002/adma.200600310
|
22 |
Yang M X, Yuan F P, Xie Q G, et al. Strain hardening in Fe-16Mn-10Al-0.86C-5Ni high specific strength steel [J]. Acta Mater., 2016, 109: 213
doi: 10.1016/j.actamat.2016.02.044
|
23 |
Cottrell A H. Commentary. A brief view of work hardening [J]. Dislocat. Solids, 2002, 11: vii
|
24 |
Wu X L, Yang M X, Yuan F P, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility [J]. Proc. Natl. Acad. Sci. USA, 2015, 112: 14501
doi: 10.1073/pnas.1517193112
|
25 |
Wu X L, Zhu Y T. Heterogeneous materials: A new class of materials with unprecedented mechanical properties [J]. Mater. Res. Lett., 2017, 5: 527
doi: 10.1080/21663831.2017.1343208
|
26 |
Zhu Y T, Wu X L. Perspective on hetero-deformation induced (HDI) hardening and back stress [J]. Mater. Res. Lett., 2019, 7: 393
doi: 10.1080/21663831.2019.1616331
|
27 |
Zhu Y T, Ameyama K, Anderson P M, et al. Heterostructured materials: Superior properties from hetero-zone interaction [J]. Mater. Res. Lett., 2021, 9: 1
doi: 10.1080/21663831.2020.1796836
|
28 |
Ashby M F. The deformation of plastically non-homogeneous materials [J]. Philos. Mag., 1970, 21: 399
|
29 |
Gao H J, Huang Y G. Geometrically necessary dislocation and size-dependent plasticity [J]. Scr. Mater., 2003, 48: 113
doi: 10.1016/S1359-6462(02)00329-9
|
30 |
Gao H, Huang Y, Nix W D, et al. Mechanism-based strain gradient plasticity—I. Theory [J]. J. Mech. Phys. Solids, 1999, 47: 1239
doi: 10.1016/S0022-5096(98)00103-3
|
31 |
Lu K. Making strong nanomaterials ductile with gradients [J]. Science, 2014, 345: 1455
doi: 10.1126/science.1255940
pmid: 25237091
|
32 |
Chen A Y, Li D F, Zhang J B, et al. Make nanostructured metal exceptionally tough by introducing non-localized fracture behaviors [J]. Scr. Mater., 2008, 59: 579
doi: 10.1016/j.scriptamat.2008.04.048
|
33 |
Wu X L, Jiang P, Chen L, et al. Extraordinary strain hardening by gradient structure [J]. Proc. Natl. Acad. Sci. USA, 2014, 111: 7197
doi: 10.1073/pnas.1324069111
|
34 |
Shao C W, Zhang P, Zhu Y K, et al. Simultaneous improvement of strength and plasticity: Additional work-hardening from gradient microstructure [J]. Acta Mater., 2018, 145: 413
doi: 10.1016/j.actamat.2017.12.028
|
35 |
Li J J, Soh A K. Modeling of the plastic deformation of nanostructured materials with grain size gradient [J]. Int. J. Plast., 2012, 39: 88
doi: 10.1016/j.ijplas.2012.06.004
|
36 |
Roumina R, Embury J D, Bouaziz O, et al. Mechanical behavior of a compositionally graded 300M steel [J]. Mater. Sci. Eng., 2013, A578: 140
|
37 |
Lu K, Lu J. Surface nanocrystallization (SNC) of metallic materials—Presentation of the concept behind a new approach [J]. J. Mater. Sci. Technol., 1999, 15: 193
doi: 10.1179/026708399101505581
|
38 |
Cheng Z, Zhou H F, Lu Q H, et al. Extra strengthening and work hardening in gradient nanotwinned metals [J]. Science, 2018, 362: eaau1925
doi: 10.1126/science.aau1925
|
39 |
Pan Q S, Zhang L X, Feng R, et al. Gradient cell-structured high-entropy alloy with exceptional strength and ductility [J]. Science, 2021, 374: 984
doi: 10.1126/science.abj8114
|
40 |
Yang M X, Yan D S, Yuan F P, et al. Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength [J]. Proc. Natl. Acad. Sci. USA, 2018, 115: 7224
doi: 10.1073/pnas.1807817115
|
41 |
Du X H, Li W P, Chang H T, et al. Dual heterogeneous structures lead to ultrahigh strength and uniform ductility in a Co-Cr-Ni medium-entropy alloy [J]. Nat. Commun., 2020, 11: 2390
doi: 10.1038/s41467-020-16085-z
pmid: 32404913
|
42 |
Mughrabi H. Dislocation wall and cell structures and long-range internal stresses in deformed metal crystals [J]. Acta Metall., 1983, 31: 1367
doi: 10.1016/0001-6160(83)90007-X
|
43 |
Gibeling J G, Nix W D. A numerical study of long range internal stresses associated with subgrain boundaries [J]. Acta Metall., 1980, 28: 1743
doi: 10.1016/0001-6160(80)90027-9
|
44 |
Llorca J, Needleman A, Suresh S. The bauschinger effect in whisker-reinforced metal-matrix composites [J]. Scr. Metall. Mater., 1990, 24: 1203
doi: 10.1016/0956-716X(90)90328-E
|
45 |
Kuhlmann-Wilsdorf D, Laird C. Dislocation behavior in fatigue II. Friction stress and back stress as inferred from an analysis of hysteresis loops [J]. Mater. Sci. Eng., 1979, 37: 111
doi: 10.1016/0025-5416(79)90074-0
|
46 |
Qin S, Yang M X, Jiang P, et al. Designing structures with combined gradients of grain size and precipitation in high entropy alloys for simultaneous improvement of strength and ductility [J]. Acta Mater., 2022, 230: 117847
doi: 10.1016/j.actamat.2022.117847
|
47 |
Wu X L, Zhu Y T, Lu K. Ductility and strain hardening in gradient and lamellar structured materials [J]. Scr. Mater., 2020, 186: 321
doi: 10.1016/j.scriptamat.2020.05.025
|
48 |
Wu X L, Zhu Y T. Gradient and lamellar heterostructures for superior mechanical properties [J]. MRS Bull., 2021, 46: 244
|
49 |
Li J G, Zhang Q, Huang R R, et al. Towards understanding the structure-property relationships of heterogeneous-structured materials [J]. Scr. Mater., 2020, 186: 304
doi: 10.1016/j.scriptamat.2020.05.013
|
50 |
Li X Y, Lu L, Li J G, et al. Mechanical properties and deformation mechanisms of gradient nanostructured metals and alloys [J]. Nat. Rev. Mater., 2020, 5: 706
doi: 10.1038/s41578-020-0212-2
|
51 |
Lu K. Gradient nanostructured materials [J]. Acta Metall. Sin., 2015, 51: 1
doi: 10.11900/0412.1961.2014.00395
|
51 |
卢 柯. 梯度纳米结构材料 [J]. 金属学报, 2015, 51: 1
|
52 |
Huang C X, Wang Y F, Ma X L, et al. Interface affected zone for optimal strength and ductility in heterogeneous laminate [J]. Mater. Today, 2018, 21: 713
doi: 10.1016/j.mattod.2018.03.006
|
53 |
Zhou H, Huang C X, Sha X C, et al. In-situ observation of dislocation dynamics near heterostructured interfaces [J]. Mater. Res. Lett., 2019, 7: 376
doi: 10.1080/21663831.2019.1616330
|
54 |
Li J C M, Chau C C. Internal stresses in plasticity, microplasticity and ductile fracture [J]. Mater. Sci. Eng., 2006, A421: 103
|
55 |
Yang M X, Pan Y, Yuan F P, et al. Back stress strengthening and strain hardening in gradient structure [J]. Mater. Res. Lett., 2016, 4: 145
doi: 10.1080/21663831.2016.1153004
|
56 |
Orowan E. Causes and effects of internal stresses [A]. Internal Stress and Fatigue in Metals [M]. London: Elsevier, 1959: 59
|
57 |
Osborne P W. On the nature of the long-range back stress in copper [J]. Acta Metall., 1964, 12: 747
doi: 10.1016/0001-6160(64)90226-3
|
58 |
Mughrabi H. On the role of strain gradients and long-range internal stresses in the composite model of crystal plasticity [J]. Mater. Sci. Eng., 2001, A317: 171
|
59 |
Wu X L, Jiang P, Chen L, et al. Synergetic strengthening by gradient structure [J]. Mater. Res. Lett., 2014, 2: 185
doi: 10.1080/21663831.2014.935821
|
60 |
Ma E, Zhu T. Towards strength-ductility synergy through the design of heterogeneous nanostructures in metals [J]. Mater. Today, 2017, 20: 323
doi: 10.1016/j.mattod.2017.02.003
|
61 |
Ma E, Wu X L. Tailoring heterogeneities in high-entropy alloys to promote strength-ductility synergy [J]. Nat. Commun., 2019, 10: 5623
doi: 10.1038/s41467-019-13311-1
pmid: 31819051
|
62 |
Wu X L, Yang M X, Yuan F P, et al. Combining gradient structure and TRIP effect to produce austenite stainless steel with high strength and ductility [J]. Acta Mater., 2016, 112: 337
doi: 10.1016/j.actamat.2016.04.045
|
63 |
Zhang S D, Yang M X, Yuan F P, et al. Extraordinary fracture toughness in nickel induced by heterogeneous grain structure [J]. Mater. Sci. Eng., 2022, A830: 142313
|
64 |
Cao R Q, Yu Q, Pan J, et al. On the exceptional damage-tolerance of gradient metallic materials [J]. Mater. Today, 2020, 32: 94
doi: 10.1016/j.mattod.2019.09.023
|
65 |
Niu G, Zurob H S, Misra R D K, et al. Superior fracture toughness in a high-strength austenitic steel with heterogeneous lamellar microstructure [J]. Acta Mater., 2022, 226: 117642
doi: 10.1016/j.actamat.2022.117642
|
66 |
Zhao H Z, You Z S, Tao N R, et al. Anisotropic toughening of nanotwin bundles in the heterogeneous nanostructured Cu [J]. Acta Mater., 2022, 228: 117748
doi: 10.1016/j.actamat.2022.117748
|
67 |
Xiong L, You Z S, Qu S D, et al. Fracture behavior of heterogeneous nanostructured 316L austenitic stainless steel with nanotwin bundles [J]. Acta Mater., 2018, 150: 130
doi: 10.1016/j.actamat.2018.02.065
|
68 |
Roland T, Retraint D, Lu K, et al. Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment [J]. Scr. Mater., 2006, 54: 1949
doi: 10.1016/j.scriptamat.2006.01.049
|
69 |
Long J Z, Pan Q S, Tao N R, et al. Improved fatigue resistance of gradient nanograined Cu [J]. Acta Mater., 2019, 166: 56
doi: 10.1016/j.actamat.2018.12.018
|
70 |
Shao C W, Zhang P, Liu R, et al. Low-cycle and extremely-low-cycle fatigue behaviors of high-Mn austenitic TRIP/TWIP alloys: Property evaluation, damage mechanisms and life prediction [J]. Acta Mater., 2016, 103: 781
doi: 10.1016/j.actamat.2015.11.015
|
71 |
Zhou X, Li X Y, Lu K. Enhanced thermal stability of nanograined metals below a critical grain size [J]. Sci. Adv., 2018, 360: 526
|
72 |
Chen X, Han Z, Li X Y, et al. Lowering coefficient of friction in Cu alloys with stable gradient nanostructures [J]. Sci. Adv., 2016, 2: e1601942
doi: 10.1126/sciadv.1601942
|
73 |
Wang H T, Tao N R, Lu K. Strengthening an austenitic Fe-Mn steel using nanotwinned austenitic grains [J]. Acta Mater., 2012, 60: 4027
doi: 10.1016/j.actamat.2012.03.035
|
74 |
Cheng Z, Bu L F, Zhang Y, et al. Unraveling the origin of extra strengthening in gradient nanotwinned metals [J]. Proc. Natl. Acad. Sci. USA, 2022, 119: e2116808119
doi: 10.1073/pnas.2116808119
|
75 |
Brown L M, Stobbs W M. The work-hardening of copper-silica [J]. Philos. Mag., 1971, 23: 1185
doi: 10.1080/14786437108217405
|
76 |
Eshelby J D. The determination of the elastic field of an ellipsoidal inclusion, and related problems [J]. Proc. Roy. Soc., 1957, 241A: 376
|
77 |
Atkinson J D, Brown L M, Stobbs W M. The work-hardening of copper-silica: IV. The Bauschinger effect and plastic relaxation [J]. Philos. Mag., 1974, 30: 1247
doi: 10.1080/14786437408207280
|
78 |
Chen X F, Wang Q, Cheng Z Y, et al. Direct observation of chemical short-range order in a medium-entropy alloy [J]. Nature, 2021, 592: 712
doi: 10.1038/s41586-021-03428-z
|
79 |
Wang J, Jiang P, Yuan F P, et al. Chemical medium-range order in a medium-entropy alloy [J]. Nat. Commun., 2022, 13: 1021
doi: 10.1038/s41467-022-28687-w
pmid: 35197473
|
80 |
Lei Z F, Liu X J, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes [J]. Nature, 2018, 563: 546
doi: 10.1038/s41586-018-0685-y
|
81 |
Li Q J, Sheng H, Ma E. Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways [J]. Nat. Commun., 2019, 10: 3563
doi: 10.1038/s41467-019-11464-7
|
82 |
Li J J, Chen S H, Weng G J, et al. A micromechanical model for heterogeneous nanograined metals with shape effect of inclusions and geometrically necessary dislocation pileups at the domain boundary [J]. Int. J. Plast., 2021, 144: 103024
doi: 10.1016/j.ijplas.2021.103024
|
83 |
Li J J, Soh A K. Enhanced ductility of surface nano-crystallized materials by modulating grain size gradient [J]. Modell. Simul. Mater. Sci. Eng., 2012, 20: 085002
|
84 |
Hughes D A, Hansen N, Bammann D J. Geometrically necessary boundaries, incidental dislocation boundaries and geometrically necessary dislocations [J]. Scr. Mater., 2003, 48: 147
doi: 10.1016/S1359-6462(02)00358-5
|
85 |
Wei Y G, Xu G S. A multiscale model for the ductile fracture of crystalline materials [J]. Int. J. Plast., 2005, 21: 2123
doi: 10.1016/j.ijplas.2005.04.003
|
86 |
Wu X L, Yang M X, Li R G, et al. Plastic accommodation during tensile deformation of gradient structure [J]. Sci. China Mater., 2021, 64: 1534
doi: 10.1007/s40843-020-1545-2
|
87 |
Wang Y F, Wang M S, Fang X T, et al. Extra strengthening in a coarse/ultrafine grained laminate: Role of gradient interfaces [J]. Int. J. Plast., 2019, 123: 196
doi: 10.1016/j.ijplas.2019.07.019
|
88 |
Wang Y F, Huang C X, Li Y S, et al. Dense dispersed shear bands in gradient-structured Ni [J]. Int. J. Plast., 2020, 124: 186
doi: 10.1016/j.ijplas.2019.08.012
|
89 |
Liu X R, Feng H, Wang J, et al. Mechanical property comparisons between CrCoNi medium-entropy alloy and 316 stainless steels [J]. J. Mater. Sci. Technol., 2022, 108: 256
doi: 10.1016/j.jmst.2021.08.057
|
90 |
Shi P J, Ren W L, Zheng T X, et al. Enhanced strength-ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae [J]. Nat. Commun., 2019, 10: 489
doi: 10.1038/s41467-019-08460-2
pmid: 30700708
|
91 |
Zhang C, Zhu C Y, Cao P H, et al. Aged metastable high-entropy alloys with heterogeneous lamella structure for superior strength-ductility synergy [J]. Acta Mater., 2020, 199: 602
doi: 10.1016/j.actamat.2020.08.043
|
92 |
Lu W J, Luo X, Ning D, et al. Excellent strength-ductility synergy properties of gradient nano-grained structural CrCoNi medium-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 112: 195
doi: 10.1016/j.jmst.2021.09.058
|
93 |
Slone C E, Miao J, George E P, et al. Achieving ultra-high strength and ductility in equiatomic CrCoNi with partially recrystallized microstructures [J]. Acta Mater., 2019, 165: 496
doi: 10.1016/j.actamat.2018.12.015
|
94 |
Shukla S, Choudhuri D, Wang T H, et al. Hierarchical features infused heterogeneous grain structure for extraordinary strength-ductility synergy [J]. Mater. Res. Lett., 2018, 6: 676
doi: 10.1080/21663831.2018.1538023
|
95 |
He F, Yang Z S, Liu S F, et al. Strain partitioning enables excellent tensile ductility in precipitated heterogeneous high-entropy alloys with gigapascal yield strength [J]. Int. J. Plast., 2021, 144: 103022
doi: 10.1016/j.ijplas.2021.103022
|
96 |
Xiang Y, Vlassak J J. Bauschinger effect in thin metal films [J]. Scr. Mater., 2005, 53: 177
doi: 10.1016/j.scriptamat.2005.03.048
|
97 |
Feaugas X. On the origin of the tensile flow stress in the stainless steel AISI 316L at 300 K: Back stress and effective stress [J]. Acta Mater., 1999, 47: 3617
doi: 10.1016/S1359-6454(99)00222-0
|
98 |
Nix W D, Gao H J. Indentation size effects in crystalline materials: A law for strain gradient plasticity [J]. J. Mech. Phys. Solids, 1998, 46: 411
doi: 10.1016/S0022-5096(97)00086-0
|
99 |
Yuan F P, Yan D S, Sun J D, et al. Ductility by shear band delocalization in the nano-layer of gradient structure [J]. Mater. Res. Lett., 2019, 7: 12
doi: 10.1080/21663831.2018.1546238
|
100 |
Wilson D V, Bate P S. Influences of cell walls and grain boundaries on transient responses of an IF steel to changes in strain path [J]. Acta Metall. Mater., 1994, 42: 1099
doi: 10.1016/0956-7151(94)90127-9
|
101 |
Asaro R J. Micromechanics of crystals and polycrystals [J]. Adv. Appl. Mech., 1983, 23: 1
|
102 |
Wei Y G, Wang X Z, Zhao M H. Size effect measurement and characterization in nanoindentation test [J]. J. Mater. Res., 2004, 19: 208
doi: 10.1557/jmr.2004.19.1.208
|
103 |
Wei Y G, Wu X L. A trans-scale linkage model and application to analyses of nanocrystalline Al-alloy material [A]. Advances in Nonlinear Mechanical Properties of Materilas [C]. Beijing: China Machine Press, 2021: 62
|
103 |
Wei Y G, Wu X L. A trans-scale linkage model and application to analyses of nanocrystalline Al-alloy material [A]. 材料的非线性力学性能研究进展 [C]. 北京: 机械工业出版社, 2021: 62
|
104 |
Tian Y Z, Zhao L J, Park N, et al. Revealing the deformation mechanisms of Cu-Al alloys with high strength and good ductility [J]. Acta Mater., 2016, 110: 61
doi: 10.1016/j.actamat.2016.03.015
|
105 |
Li J J, Weng G J, Chen S H, et al. On strain hardening mechanism in gradient nanostructures [J]. Int. J. Plast., 2017, 88: 89
doi: 10.1016/j.ijplas.2016.10.003
|
106 |
Li J J, Lu W J, Chen S H, et al. Revealing extra strengthening and strain hardening in heterogeneous two-phase nanostructures [J]. Int. J. Plast., 2020, 126: 102626
doi: 10.1016/j.ijplas.2019.11.005
|
107 |
Li Z M, Tasan C C, Springer H, et al. Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys [J]. Sci. Rep., 2017, 7: 40704
doi: 10.1038/srep40704
pmid: 28079175
|
108 |
He J Y, Liu W H, Wang H, et al. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system [J]. Acta Mater., 2014, 62: 105
doi: 10.1016/j.actamat.2013.09.037
|
109 |
Cao F H, Wang Y J, Dai L H. Novel atomic-scale mechanism of incipient plasticity in a chemically complex CrCoNi medium-entropy alloy associated with inhomogeneity in local chemical environment [J]. Acta Mater., 2020, 194: 283
doi: 10.1016/j.actamat.2020.05.042
|
110 |
Ding Q Q, Zhang Y, Chen X, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys [J]. Nature, 2019, 574: 223
doi: 10.1038/s41586-019-1617-1
|
111 |
Liu L, Yu Q, Wang Z, et al. Making ultrastrong steel tough by grain-boundary delamination [J]. Science, 2020, 368: 1347
doi: 10.1126/science.aba9413
pmid: 32381592
|
112 |
Jiang S H, Wang H, Wu Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation [J]. Nature, 2017, 544: 460
doi: 10.1038/nature22032
|
113 |
Ma Y, Yang M X, Jiang P, et al. Plastic deformation mechanisms in a severely deformed Fe-Ni-Al-C alloy with superior tensile properties [J]. Sci. Rep., 2017, 7: 15619
doi: 10.1038/s41598-017-15905-5
pmid: 29142214
|
114 |
Furuta T, Kuramoto S, Ohsuna T, et al. Die-hard plastic deformation behavior in an ultrahigh-strength Fe-Ni-Al-C alloy [J]. Scr. Mater., 2015, 101: 87
doi: 10.1016/j.scriptamat.2015.01.025
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|