Processing math: 100%
Please wait a minute...
金属学报  2022, Vol. 58 Issue (9): 1208-1220    DOI: 10.11900/0412.1961.2021.00082
  研究论文 本期目录 | 过刊浏览 |
短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响
韩冬1, 张炎杰1, 李小武1,2()
1.东北大学 材料科学与工程学院 材料物理与化学系 沈阳 110819
2.东北大学 材料各向异性与织构教育部重点实验室 沈阳 110819
Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies
HAN Dong1, ZHANG Yanjie1, LI Xiaowu1,2()
1.Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2.Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
引用本文:

韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
Dong HAN, Yanjie ZHANG, Xiaowu LI. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. Acta Metall Sin, 2022, 58(9): 1208-1220.

全文: PDF(4531 KB)   HTML
摘要: 

以不同Mn含量的高层错能Cu-Mn合金为研究对象,在恒应力幅控制下系统研究了短程有序对其拉-拉疲劳变形行为及损伤机制影响的规律和微观机理。结果表明,随着短程有序度的增加,微观变形机制由位错的波状滑移逐渐转变为平面滑移,疲劳裂纹萌生模式由倾向沿晶开裂转变为沿滑移带开裂,合金的拉-拉疲劳寿命显著提高。上述影响在宏观上表现为Basquin关系中疲劳强度系数(σf)和疲劳强度指数(b)的同步增大。分析表明,σf的增大主要归因于Mn元素的固溶强化和位错平面滑移所引起的加工硬化能力的增强;而b的增大则源于位错平面滑移表现出的更高的变形均匀性和滑移可逆性。

关键词 Cu-Mn合金短程有序层错能疲劳位错滑移方式位错结构    
Abstract

The cyclic-deformation mechanism of face-centered cubic (fcc) pure metals or single-phase alloys, i.e., decreasing the stacking fault energy (SFE) of materials through alloying could lead to the transition of dislocation slip mode from wavy slip to planar slip, thereby, improving fatigue properties has been achieved after extensive research. However, except for diminishing SFE, alloying treatment can increase the degree of short-range ordering (SRO) in the alloy, which could equally promote the activation of planar slip just as the lower SFE does in alloys. However, most studies only emphasized the unilateral effect of SFE but ignored the action of SRO. For some single-phase fcc alloys, such as Cu-Mn, Cu-Ni, and some high-entropy alloys, the effect of SRO cannot be ignored. Therefore, in this study, the high SFE Cu-Mn alloys with different SRO degrees were selected as the target materials and general rules and micromechanisms for the effect of SRO on their tension-tension fatigue deformation and damage behavior were investigated under different stress amplitudes. The results show that with the increase of SRO degree, the dislocation slip mode changes from wavy to planar slip. Fatigue-cracking mode changes from dominating intergranular cracking to slip-band cracking, and the tension-tension fatigue life of Cu-Mn alloys is improved. The abovementioned effects are manifested as a synchronous improvement of fatigue strength coefficient (σf) and fatigue strength exponent (b) in the Basquin relation. The analysis shows that the enlargement of σf is mainly owing to the solid solution strengthening of Mn element, and the planar-slip enhanced work-hardening capacity, whereas the increase in b stems from the higher deformation uniformity and slip reversibility governed by planar slip. In summary, this study provides guide for improving the fatigue properties of fcc metals.

Key wordsCu-Mn alloy    short-range ordering    stacking fault energy    fatigue    dislocation slip mode    dislocation structure
收稿日期: 2021-02-26     
ZTFLH:  TG111.8  
基金资助:国家自然科学基金项目(51571058);国家自然科学基金项目(51871048)
作者简介: 韩 冬,男,满族,1985年生,博士生
AlloyStress amplitude / MPa
Cu-5%Mn75, 90, 100, 115, 120, 130
Cu-10%Mn90, 100, 115, 120, 130, 145
Cu-15%Mn90, 100, 115, 130, 145, 155
Cu-20%Mn90, 115, 130, 145, 160, 170
表1  拉-拉疲劳测试中Cu-Mn 合金选取的应力幅
图1  Cu-Mn合金显微组织的OM像
图2  Cu-Mn合金的XRD谱
AlloyRm / MPaRp0.2 / MPaδt / %δu / %
Cu-5%Mn2857955.246.5
Cu-10%Mn3209556.248.5
Cu-15%Mn33810756.948.7
Cu-20%Mn36511556.952.5
表2  不同Mn含量Cu-Mn合金的室温力学性能[16]
图3  Cu-Mn合金的应力幅-疲劳寿命(S-N)曲线
图4  Cu-Mn合金的疲劳强度系数(σf')与拉伸力学性能之间的关系
图5  Cu-Mn合金在应力幅为90 MPa下表面变形形貌和损伤特征的SEM像
图6  Cu-15%Mn和Cu-20%Mn合金在应力幅为115 MPa下表面损伤特征的SEM像
图7  应力幅对Cu-20%Mn合金拉-拉疲劳损伤开裂行为的影响
图8  低应力幅(90 MPa)下Cu-Mn合金疲劳后样品内部微观结构的TEM像
图9  中等应力幅(115 MPa)下Cu-Mn合金疲劳后样品内部微观结构的TEM像
图10  高应力幅(130 MPa)下Cu-Mn合金疲劳后样品内部微观结构的TEM像
图11  双对数坐标下S-N曲线示意图
图12  几种典型fcc结构金属的σf'和拉伸强度之间的关系[20,34,36~38]
图13  滑移方式对Cu-Mn合金晶间变形均匀性影响的示意图
图14  应力幅90 MPa下Cu-Mn合金疲劳后裂纹源区形貌的SEM像
图15  短程有序对Cu-Mn合金拉-拉疲劳性能及变形微观结构影响的示意图
1 Liu R, Zhang Z J, Zhang P, et al. Extremely-low-cycle fatigue behaviors of Cu and Cu-Al alloys: Damage mechanisms and life prediction [J]. Acta Mater., 2015, 83: 341
doi: 10.1016/j.actamat.2014.10.002
2 An X H, Wu S D, Wang Z G, et al. Enhanced cyclic deformation responses of ultrafine-grained Cu and nanocrystalline Cu-Al alloys [J]. Acta Mater., 2014, 74: 200
doi: 10.1016/j.actamat.2014.04.053
3 An X H, Wu S D, Wang Z G, et al. Significance of stacking fault energy in bulk nanostructured materials: Insights from Cu and its binary alloys as model systems [J]. Prog. Mater. Sci., 2019, 101: 1
doi: 10.1016/j.pmatsci.2018.11.001
4 Zhang Z J, Zhang P, Zhang Z F. Cyclic softening behaviors of ultra-fine grained Cu-Zn alloys [J]. Acta Mater., 2016, 121: 331
doi: 10.1016/j.actamat.2016.09.020
5 Gallagher P C J. The influence of alloying, temperature, and related effects on the stacking fault energy [J]. Met. Trans., 1970, 1: 2429
6 Nakajima K, Numakura K. Effect of solute atoms on stacking faults Cu-Ni and Cu-Mn systems [J]. Philos. Mag., 1965, 12A: 361
7 Steffens T, Schwink C, Korner A, et al. Transmission electron microscopy study of the stacking-fault energy and dislocation structure in CuMn alloys [J]. Philos. Mag., 1987, 56A: 161
8 Hamdi F, Asgari S. Influence of stacking fault energy and short-range ordering on dynamic recovery and work hardening behavior of copper alloys [J]. Scr. Mater., 2010, 62: 693
doi: 10.1016/j.scriptamat.2010.01.031
9 Neuhäuser H, Arkan O B, Potthoff H H. Dislocation multipoles and estimation of frictional stress in f.c.c. copper alloys [J]. Mater. Sci. Eng., 1986, 81: 201
doi: 10.1016/0025-5416(86)90263-6
10 Yu G, Lücke K. On the theory of short range ordering kinetics under special consideration of correlation effects [J]. Acta Metall. Mater., 1992, 40: 2523
doi: 10.1016/0956-7151(92)90322-6
11 Hong H L. Cluster model of FCC solid solutions and composition interpretation of industrial alloys [D]. Dalian: Dalian University of Technology, 2016
11 洪海莲. 面心立方固溶体的团簇模型及工程合金的成分解析 [D]. 大连: 大连理工大学, 2016
12 Clément N, Caillard D, Martin J L. Heterogeneous deformation of concentrated Ni-Cr FCC alloys: Macroscopic and microscopic behavior [J]. Acta Metall., 1984, 32: 961
doi: 10.1016/0001-6160(84)90034-8
13 Gerold V, Karnthaler H P. On the origin of planar slip in f.c.c. alloys [J]. Acta Metall., 1989, 37: 2177
doi: 10.1016/0001-6160(89)90143-0
14 Castany P, Pettinari-Sturmel F, Crestou J, et al. Experimental study of dislocation mobility in a Ti-6Al-4V alloy [J]. Acta Mater., 2007, 55: 6284
doi: 10.1016/j.actamat.2007.07.032
15 Zhang R P, Zhao S T, Ding J, et al. Short-range order and its impact on the CrCoNi medium-entropy alloy [J]. Nature, 2020, 581: 283
doi: 10.1038/s41586-020-2275-z
16 Han D, Wang Z Y, Yan Y, et al. A good strength-ductility match in Cu-Mn alloys with high stacking fault energies: Determinant effect of short range ordering [J]. Scr. Mater., 2017, 133: 59
doi: 10.1016/j.scriptamat.2017.02.010
17 Pfeiler W. Investigation of short-range order by electrical resistivity measurement [J]. Acta Metall., 1988, 36: 2417
doi: 10.1016/0001-6160(88)90192-7
18 Basquin O H. The exponential law of endurance tests [A]. Proceedings of the American Society for Testing and Materials [C]. West Conshohocken, PA, USA: American Society for Testing Materials, 1910: 625
19 Ellyin F. Fatigue Damage, Crack Growth and Life Prediction [M]. London: Chapman & Hall, 1997: 81
20 Wang B, Zhang P, Duan Q Q, et al. High-cycle fatigue properties and damage mechanisms of pre-strained Fe-30Mn-0.9C twinning-induced plasticity steel [J]. Mater. Sci. Eng., 2017, A679: 258
21 Roessle M L, Fatemi A. Strain-controlled fatigue properties of steels and some simple approximations [J]. Int. J. Fatigue, 2000, 22: 495
doi: 10.1016/S0142-1123(00)00026-8
22 Yang C L. The mechanisms and approaches for synchronously improving the strength and plasticity of classical metals [D]. Shenyang: University of Chinese Academy of Sciences (Institute of Metal Research, Chinese Academy of Sciences), 2018
22 杨成林. 典型金属材料同步强韧化机制及方法研究 [D]. 沈阳: 中国科学院大学(中国科学院金属研究所), 2018
23 Yang L, Tao N R, Lu K, et al. Enhanced fatigue resistance of Cu with a gradient nanograined surface layer [J]. Scr. Mater., 2013, 68: 801
doi: 10.1016/j.scriptamat.2013.01.031
24 Liang F L, Laird C. Control of intergranular fatigue cracking by slip homogeneity in copper II: Effect of loading mode [J]. Mater. Sci. Eng., 1989, A117: 103
25 Zhang Z F, Wang Z G. Grain boundary effects on cyclic deformation and fatigue damage [J]. Prog. Mater. Sci., 2008, 53: 1025
doi: 10.1016/j.pmatsci.2008.06.001
26 Shao C W, Shi F, Li X W. Influence of cyclic stress amplitude on mechanisms of deformation of a high nitrogen austenitic stainless steel [J]. Mater. Sci. Eng., 2016, A667: 208
27 Liu R, Zhang Z J, Zhang Z F. The criteria for microstructure evolution of Cu and Cu-Al alloys induced by cyclic loading [J]. Mater. Sci. Eng., 2016, A666: 123
28 Shao C W, Zhang P, Liu R, et al. Low-cycle and extremely-low-cycle fatigue behaviors of high-Mn austenitic TRIP/TWIP alloys: Property evaluation, damage mechanisms and life prediction [J]. Acta Mater., 2016, 103: 781
doi: 10.1016/j.actamat.2015.11.015
29 Xiang Z C. Investigations on the microstructural evolution of Cu-Mn alloys under uniaxial tensile and fatigue loads [D]. Shenyang: Northeastern University, 2019
29 向宗承. Cu-Mn合金在单向拉伸和疲劳载荷下的微观结构演化研究 [D]. 沈阳: 东北大学, 2019
30 Han D, Guan X J, Yan Y, et al. Anomalous recovery of work hardening rate in Cu-Mn alloys with high stacking fault energies under uniaxial compression [J]. Mater. Sci. Eng., 2019, A743: 745
31 Li X W, Peng N, Wu X M, et al. Plastic-strain-amplitude dependence of dislocation structures in cyclically deformed <112>-oriented Cu-7at. pct Al alloy single crystals [J]. Metall. Mater. Trans., 2014, 45A: 3835
32 Zhang Y J, Han D, Li X W. Improving the stress-controlled fatigue life of low solid-solution hardening Ni-Cr alloys by enhancing short range ordering degree [J]. Int. J. Fatigue, 2021, 149: 106266
doi: 10.1016/j.ijfatigue.2021.106266
33 Gutierrez-Urrutia I, Raabe D. Dislocation and twin substructure evolution during strain hardening of an Fe-22wt.%Mn-0.6wt.%C TWIP steel observed by electron channeling contrast imaging [J]. Acta Mater., 2011, 59: 6449
doi: 10.1016/j.actamat.2011.07.009
34 Wang Z Y, Han D, Li X W. Competitive effect of stacking fault energy and short-range clustering on the plastic deformation behavior of Cu-Ni alloys [J]. Mater. Sci. Eng., 2017, A679: 484
35 Wang B, Zhang P, Duan Q Q, et al. Synchronously improved fatigue strength and fatigue crack growth resistance in twinning-induced plasticity steels [J]. Mater. Sci. Eng., 2018, A711: 533
36 Liu R. Investigations on tensile and fatigue properties of Cu-Al alloys [D]. Shenyang: University of Chinese Academy of Sciences (Institute of Metal Research, Chinese Academy of Sciences), 2018
36 刘 睿. 铜铝合金拉伸与疲劳性能研究 [D]. 沈阳: 中国科学院大学(中国科学院金属研究所), 2018
37 Zhang Z J, Pang J C, Zhang Z F. Optimizing the fatigue strength of ultrafine-grained Cu-Zn alloys [J]. Mater. Sci. Eng., 2016, A666: 305
38 He J X. Investigations on compression and tension-tension fatigue behaviors of coarse-grained Cu-Ni alloys with high stacking fault energies [D]. Shenyang: Northeastern University, 2017
38 何晋先. 高层错能粗晶Cu-Ni合金的压缩和拉-拉疲劳行为研究 [D]. 沈阳: 东北大学, 2017
39 Lim L C, Tay Y K, Fong H S. Fatigue damage and crack nucleation mechanisms at intermediate strain amplitudes [J]. Acta Metall. Mater., 1990, 38: 595
doi: 10.1016/0956-7151(90)90213-Z
40 Kim W H, Laird C. Crack nucleation and stage I propagation in high strain fatigue-I. Microscopic and interferometric observations [J]. Acta Metall., 1978, 26: 777
doi: 10.1016/0001-6160(78)90028-7
41 Han D, He J X, Guan X J, et al. Impact of short-range clustering on the multistage work-hardening behavior in Cu-Ni Alloys [J]. Metals, 2019, 9: 151
doi: 10.3390/met9020151
42 Li P. Investigation on the cyclic deformation behaviors of face-centered cubic crystals [D]. Shenyang: University of Chinese Academy of Sciences (Institute of Metal Research, Chinese Academy of Sciences), 2009
42 李 鹏. 面心立方晶体循环形变行为研究 [D]. 沈阳: 中国科学院大学(中国科学院金属研究所), 2009
43 Zhang Z J, An X H, Zhang P, et al. Effects of dislocation slip mode on high-cycle fatigue behaviors of ultrafine-grained Cu-Zn alloy processed by equal-channel angular pressing [J]. Scr. Mater., 2013, 68: 389
doi: 10.1016/j.scriptamat.2012.10.036
44 Wang B. Investigation on fatigue properties optimization and mechanisms of two high-strength steels [D]. Shenyang: Northeastern University, 2018
44 王 斌. 两种高强钢疲劳性能优化及机理研究 [D]. 沈阳: 东北大学, 2018
45 Mughrabi H. Cyclic slip irreversibilities and the evolution of fatigue damage [J]. Metall. Mater. Trans., 2009, 40B: 431
46 Mughrabi H. Microstructural fatigue mechanisms: Cyclic slip irreversibility, crack initiation, non-linear elastic damage analysis [J]. Int. J. Fatigue, 2013, 57: 2
doi: 10.1016/j.ijfatigue.2012.06.007
[1] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[2] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[3] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[5] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[6] 张滨, 田达, 宋竹满, 张广平. 深潜器耐压壳用钛合金保载疲劳服役可靠性研究进展[J]. 金属学报, 2023, 59(6): 713-726.
[7] 张哲峰, 李克强, 蔡拓, 李鹏, 张振军, 刘睿, 杨金波, 张鹏. 层错能对面心立方金属形变机制与力学性能的影响[J]. 金属学报, 2023, 59(4): 467-477.
[8] 戚钊, 王斌, 张鹏, 刘睿, 张振军, 张哲峰. 应力比对含缺陷选区激光熔化TC4合金稳态疲劳裂纹扩展速率的影响[J]. 金属学报, 2023, 59(10): 1411-1418.
[9] 宋文硕, 宋竹满, 罗雪梅, 张广平, 张滨. 粗糙表面高强铝合金导线疲劳寿命预测[J]. 金属学报, 2022, 58(8): 1035-1043.
[10] 周红伟, 高建兵, 沈加明, 赵伟, 白凤梅, 何宜柱. 高温低周疲劳下C-HRA-5奥氏体耐热钢中孪晶界演变[J]. 金属学报, 2022, 58(8): 1013-1023.
[11] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[12] 杨秦政, 杨晓光, 黄渭清, 石多奇. 粉末高温合金FGH4096的疲劳小裂纹扩展行为[J]. 金属学报, 2022, 58(5): 683-694.
[13] 李细锋, 李天乐, 安大勇, 吴会平, 陈劼实, 陈军. 钛合金及其扩散焊疲劳特性研究进展[J]. 金属学报, 2022, 58(4): 473-485.
[14] 苏凯新, 张继旺, 张艳斌, 闫涛, 李行, 纪东东. 微弧氧化6082-T6铝合金的高周疲劳性能及残余应力松弛机理[J]. 金属学报, 2022, 58(3): 334-344.
[15] 郭昊函, 杨杰, 刘芳, 卢荣生. GH4169合金拘束相关的疲劳裂纹萌生寿命[J]. 金属学报, 2022, 58(12): 1633-1644.