|
|
短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响 |
韩冬1, 张炎杰1, 李小武1,2( ) |
1.东北大学 材料科学与工程学院 材料物理与化学系 沈阳 110819 2.东北大学 材料各向异性与织构教育部重点实验室 沈阳 110819 |
|
Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies |
HAN Dong1, ZHANG Yanjie1, LI Xiaowu1,2( ) |
1.Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China 2.Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China |
引用本文:
韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
Dong HAN,
Yanjie ZHANG,
Xiaowu LI.
Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. Acta Metall Sin, 2022, 58(9): 1208-1220.
1 |
Liu R, Zhang Z J, Zhang P, et al. Extremely-low-cycle fatigue behaviors of Cu and Cu-Al alloys: Damage mechanisms and life prediction [J]. Acta Mater., 2015, 83: 341
doi: 10.1016/j.actamat.2014.10.002
|
2 |
An X H, Wu S D, Wang Z G, et al. Enhanced cyclic deformation responses of ultrafine-grained Cu and nanocrystalline Cu-Al alloys [J]. Acta Mater., 2014, 74: 200
doi: 10.1016/j.actamat.2014.04.053
|
3 |
An X H, Wu S D, Wang Z G, et al. Significance of stacking fault energy in bulk nanostructured materials: Insights from Cu and its binary alloys as model systems [J]. Prog. Mater. Sci., 2019, 101: 1
doi: 10.1016/j.pmatsci.2018.11.001
|
4 |
Zhang Z J, Zhang P, Zhang Z F. Cyclic softening behaviors of ultra-fine grained Cu-Zn alloys [J]. Acta Mater., 2016, 121: 331
doi: 10.1016/j.actamat.2016.09.020
|
5 |
Gallagher P C J. The influence of alloying, temperature, and related effects on the stacking fault energy [J]. Met. Trans., 1970, 1: 2429
|
6 |
Nakajima K, Numakura K. Effect of solute atoms on stacking faults Cu-Ni and Cu-Mn systems [J]. Philos. Mag., 1965, 12A: 361
|
7 |
Steffens T, Schwink C, Korner A, et al. Transmission electron microscopy study of the stacking-fault energy and dislocation structure in CuMn alloys [J]. Philos. Mag., 1987, 56A: 161
|
8 |
Hamdi F, Asgari S. Influence of stacking fault energy and short-range ordering on dynamic recovery and work hardening behavior of copper alloys [J]. Scr. Mater., 2010, 62: 693
doi: 10.1016/j.scriptamat.2010.01.031
|
9 |
Neuhäuser H, Arkan O B, Potthoff H H. Dislocation multipoles and estimation of frictional stress in f.c.c. copper alloys [J]. Mater. Sci. Eng., 1986, 81: 201
doi: 10.1016/0025-5416(86)90263-6
|
10 |
Yu G, Lücke K. On the theory of short range ordering kinetics under special consideration of correlation effects [J]. Acta Metall. Mater., 1992, 40: 2523
doi: 10.1016/0956-7151(92)90322-6
|
11 |
Hong H L. Cluster model of FCC solid solutions and composition interpretation of industrial alloys [D]. Dalian: Dalian University of Technology, 2016
|
11 |
洪海莲. 面心立方固溶体的团簇模型及工程合金的成分解析 [D]. 大连: 大连理工大学, 2016
|
12 |
Clément N, Caillard D, Martin J L. Heterogeneous deformation of concentrated Ni-Cr FCC alloys: Macroscopic and microscopic behavior [J]. Acta Metall., 1984, 32: 961
doi: 10.1016/0001-6160(84)90034-8
|
13 |
Gerold V, Karnthaler H P. On the origin of planar slip in f.c.c. alloys [J]. Acta Metall., 1989, 37: 2177
doi: 10.1016/0001-6160(89)90143-0
|
14 |
Castany P, Pettinari-Sturmel F, Crestou J, et al. Experimental study of dislocation mobility in a Ti-6Al-4V alloy [J]. Acta Mater., 2007, 55: 6284
doi: 10.1016/j.actamat.2007.07.032
|
15 |
Zhang R P, Zhao S T, Ding J, et al. Short-range order and its impact on the CrCoNi medium-entropy alloy [J]. Nature, 2020, 581: 283
doi: 10.1038/s41586-020-2275-z
|
16 |
Han D, Wang Z Y, Yan Y, et al. A good strength-ductility match in Cu-Mn alloys with high stacking fault energies: Determinant effect of short range ordering [J]. Scr. Mater., 2017, 133: 59
doi: 10.1016/j.scriptamat.2017.02.010
|
17 |
Pfeiler W. Investigation of short-range order by electrical resistivity measurement [J]. Acta Metall., 1988, 36: 2417
doi: 10.1016/0001-6160(88)90192-7
|
18 |
Basquin O H. The exponential law of endurance tests [A]. Proceedings of the American Society for Testing and Materials [C]. West Conshohocken, PA, USA: American Society for Testing Materials, 1910: 625
|
19 |
Ellyin F. Fatigue Damage, Crack Growth and Life Prediction [M]. London: Chapman & Hall, 1997: 81
|
20 |
Wang B, Zhang P, Duan Q Q, et al. High-cycle fatigue properties and damage mechanisms of pre-strained Fe-30Mn-0.9C twinning-induced plasticity steel [J]. Mater. Sci. Eng., 2017, A679: 258
|
21 |
Roessle M L, Fatemi A. Strain-controlled fatigue properties of steels and some simple approximations [J]. Int. J. Fatigue, 2000, 22: 495
doi: 10.1016/S0142-1123(00)00026-8
|
22 |
Yang C L. The mechanisms and approaches for synchronously improving the strength and plasticity of classical metals [D]. Shenyang: University of Chinese Academy of Sciences (Institute of Metal Research, Chinese Academy of Sciences), 2018
|
22 |
杨成林. 典型金属材料同步强韧化机制及方法研究 [D]. 沈阳: 中国科学院大学(中国科学院金属研究所), 2018
|
23 |
Yang L, Tao N R, Lu K, et al. Enhanced fatigue resistance of Cu with a gradient nanograined surface layer [J]. Scr. Mater., 2013, 68: 801
doi: 10.1016/j.scriptamat.2013.01.031
|
24 |
Liang F L, Laird C. Control of intergranular fatigue cracking by slip homogeneity in copper II: Effect of loading mode [J]. Mater. Sci. Eng., 1989, A117: 103
|
25 |
Zhang Z F, Wang Z G. Grain boundary effects on cyclic deformation and fatigue damage [J]. Prog. Mater. Sci., 2008, 53: 1025
doi: 10.1016/j.pmatsci.2008.06.001
|
26 |
Shao C W, Shi F, Li X W. Influence of cyclic stress amplitude on mechanisms of deformation of a high nitrogen austenitic stainless steel [J]. Mater. Sci. Eng., 2016, A667: 208
|
27 |
Liu R, Zhang Z J, Zhang Z F. The criteria for microstructure evolution of Cu and Cu-Al alloys induced by cyclic loading [J]. Mater. Sci. Eng., 2016, A666: 123
|
28 |
Shao C W, Zhang P, Liu R, et al. Low-cycle and extremely-low-cycle fatigue behaviors of high-Mn austenitic TRIP/TWIP alloys: Property evaluation, damage mechanisms and life prediction [J]. Acta Mater., 2016, 103: 781
doi: 10.1016/j.actamat.2015.11.015
|
29 |
Xiang Z C. Investigations on the microstructural evolution of Cu-Mn alloys under uniaxial tensile and fatigue loads [D]. Shenyang: Northeastern University, 2019
|
29 |
向宗承. Cu-Mn合金在单向拉伸和疲劳载荷下的微观结构演化研究 [D]. 沈阳: 东北大学, 2019
|
30 |
Han D, Guan X J, Yan Y, et al. Anomalous recovery of work hardening rate in Cu-Mn alloys with high stacking fault energies under uniaxial compression [J]. Mater. Sci. Eng., 2019, A743: 745
|
31 |
Li X W, Peng N, Wu X M, et al. Plastic-strain-amplitude dependence of dislocation structures in cyclically deformed <112>-oriented Cu-7at. pct Al alloy single crystals [J]. Metall. Mater. Trans., 2014, 45A: 3835
|
32 |
Zhang Y J, Han D, Li X W. Improving the stress-controlled fatigue life of low solid-solution hardening Ni-Cr alloys by enhancing short range ordering degree [J]. Int. J. Fatigue, 2021, 149: 106266
doi: 10.1016/j.ijfatigue.2021.106266
|
33 |
Gutierrez-Urrutia I, Raabe D. Dislocation and twin substructure evolution during strain hardening of an Fe-22wt.%Mn-0.6wt.%C TWIP steel observed by electron channeling contrast imaging [J]. Acta Mater., 2011, 59: 6449
doi: 10.1016/j.actamat.2011.07.009
|
34 |
Wang Z Y, Han D, Li X W. Competitive effect of stacking fault energy and short-range clustering on the plastic deformation behavior of Cu-Ni alloys [J]. Mater. Sci. Eng., 2017, A679: 484
|
35 |
Wang B, Zhang P, Duan Q Q, et al. Synchronously improved fatigue strength and fatigue crack growth resistance in twinning-induced plasticity steels [J]. Mater. Sci. Eng., 2018, A711: 533
|
36 |
Liu R. Investigations on tensile and fatigue properties of Cu-Al alloys [D]. Shenyang: University of Chinese Academy of Sciences (Institute of Metal Research, Chinese Academy of Sciences), 2018
|
36 |
刘 睿. 铜铝合金拉伸与疲劳性能研究 [D]. 沈阳: 中国科学院大学(中国科学院金属研究所), 2018
|
37 |
Zhang Z J, Pang J C, Zhang Z F. Optimizing the fatigue strength of ultrafine-grained Cu-Zn alloys [J]. Mater. Sci. Eng., 2016, A666: 305
|
38 |
He J X. Investigations on compression and tension-tension fatigue behaviors of coarse-grained Cu-Ni alloys with high stacking fault energies [D]. Shenyang: Northeastern University, 2017
|
38 |
何晋先. 高层错能粗晶Cu-Ni合金的压缩和拉-拉疲劳行为研究 [D]. 沈阳: 东北大学, 2017
|
39 |
Lim L C, Tay Y K, Fong H S. Fatigue damage and crack nucleation mechanisms at intermediate strain amplitudes [J]. Acta Metall. Mater., 1990, 38: 595
doi: 10.1016/0956-7151(90)90213-Z
|
40 |
Kim W H, Laird C. Crack nucleation and stage I propagation in high strain fatigue-I. Microscopic and interferometric observations [J]. Acta Metall., 1978, 26: 777
doi: 10.1016/0001-6160(78)90028-7
|
41 |
Han D, He J X, Guan X J, et al. Impact of short-range clustering on the multistage work-hardening behavior in Cu-Ni Alloys [J]. Metals, 2019, 9: 151
doi: 10.3390/met9020151
|
42 |
Li P. Investigation on the cyclic deformation behaviors of face-centered cubic crystals [D]. Shenyang: University of Chinese Academy of Sciences (Institute of Metal Research, Chinese Academy of Sciences), 2009
|
42 |
李 鹏. 面心立方晶体循环形变行为研究 [D]. 沈阳: 中国科学院大学(中国科学院金属研究所), 2009
|
43 |
Zhang Z J, An X H, Zhang P, et al. Effects of dislocation slip mode on high-cycle fatigue behaviors of ultrafine-grained Cu-Zn alloy processed by equal-channel angular pressing [J]. Scr. Mater., 2013, 68: 389
doi: 10.1016/j.scriptamat.2012.10.036
|
44 |
Wang B. Investigation on fatigue properties optimization and mechanisms of two high-strength steels [D]. Shenyang: Northeastern University, 2018
|
44 |
王 斌. 两种高强钢疲劳性能优化及机理研究 [D]. 沈阳: 东北大学, 2018
|
45 |
Mughrabi H. Cyclic slip irreversibilities and the evolution of fatigue damage [J]. Metall. Mater. Trans., 2009, 40B: 431
|
46 |
Mughrabi H. Microstructural fatigue mechanisms: Cyclic slip irreversibility, crack initiation, non-linear elastic damage analysis [J]. Int. J. Fatigue, 2013, 57: 2
doi: 10.1016/j.ijfatigue.2012.06.007
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|