|
|
金属Mg二阶锥面<c+a>刃位错运动特性的分子动力学模拟 |
李美霖1, 李赛毅1,2( ) |
1.中南大学材料科学与工程学院 长沙 410083 2.中南大学有色金属材料科学与工程教育部重点实验室 长沙 410012 |
|
Motion Characteristics of <c+a> Edge Dislocation on the Second-Order Pyramidal Plane in Magnesium Simulated by Molecular Dynamics |
LI Meilin1, LI Saiyi1,2( ) |
1.School of Materials Science and Engineering, Central South University, Changsha 410083, China 2.Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410012, China |
引用本文:
李美霖, 李赛毅. 金属Mg二阶锥面<c+a>刃位错运动特性的分子动力学模拟[J]. 金属学报, 2020, 56(5): 795-800.
Meilin LI,
Saiyi LI.
Motion Characteristics of <c+a> Edge Dislocation on the Second-Order Pyramidal Plane in Magnesium Simulated by Molecular Dynamics[J]. Acta Metall Sin, 2020, 56(5): 795-800.
1 |
Pollock T M. Weight loss with magnesium alloys [J]. Science, 2010, 328: 986
doi: 10.1126/science.1182848
pmid: 20489013
|
2 |
Chen Z H. Wrought Magnesium Alloy [M]. Beijing: Chemical Industry Press, 2005: 48
|
2 |
陈振华. 变形镁合金 [M]. 北京: 化学工业出版社, 2005: 48
|
3 |
Liu B Y, Liu F, Yang N, et al. Large plasticity in magnesium mediated by pyramidal dislocations [J]. Science, 2019, 365: 73
doi: 10.1126/science.aaw2843
pmid: 31273119
|
4 |
Bertin N, Tomé C N, Beyerlein I J, et al. On the strength of dislocation interactions and their effect on latent hardening in pure magnesium [J]. Int. J. Plast., 2014, 62: 72
|
5 |
Jiang J J, Miao L, Liang P, et al. Computational Material Science—Design Practice Method [M]. Shanghai: Higher Education Press, 2010: 162
|
5 |
江建军, 缪 灵, 梁 培等. 计算材料学——设计实践方法 [M]. 上海: 高等教育出版社, 2010: 162
|
6 |
Bacon D J, Osetsky Y N, Rodney D. Chapter 88 dislocation-obstacle interactions at the atomic level [J]. Dislocations Solids, 2009, 15: 1
|
7 |
Groh S, Marin E B, Horstemeyer M F, et al. Dislocation motion in magnesium: A study by molecular statics and molecular dynamics [J]. Modell. Simul. Mater. Sci. Eng., 2009, 17: 075009
|
8 |
Fan H D, El-Awady J A. Towards resolving the anonymity of pyramidal slip in magnesium [J]. Mater. Sci. Eng., 2015, A644: 318
|
9 |
Fan H D, Wang Q Y, Tian X B, et al. Temperature effects on the mobility of pyramidal <c+a> dislocations in magnesium [J]. Scr. Mater., 2017, 127: 68
|
10 |
Obara T, Yoshinga H, Morozumi S.{11$\bar{2}$2}<$\bar{1}$$\bar{1}$23> slip system in magnesium [J]. Acta Metall., 1973, 21: 845
|
11 |
Meyers M A, translated by Zhang Q M, Liu Y, Huang F L, et al. Dynamic Behavior of Materials [M]. Beijing: National Defense Industry Press, 2006: 230
|
11 |
(Meyers M A著>, 张庆明, 刘 彦, 黄风雷等译. 材料的动力学行为 [M]. 北京: 国防工业出版社, 2006: 230
|
12 |
Mordehai D, Ashkenazy Y, Kelson I, et al. Dynamic properties of screw dislocations in Cu: A molecular dynamics study [J]. Phys. Rev., 2003, 67B: 024112
|
13 |
Olmsted D L, Hector L GCurtinJr, , et al. Atomistic simulations of dislocation mobility in Al, Ni and Al/Mg alloys [J]. Modell. Simul. Mater. Sci. Eng., 2005, 13: 371
|
14 |
Plimpton S. Fast parallel algorithms for short-range molecular dynamics [J]. J. Comput. Phys., 1995, 117: 1
|
15 |
Osetsky Y N, Bacon D J. An atomic-level model for studying the dynamics of edge dislocations in metals [J]. Modell. Simul. Mater. Sci. Eng., 2003, 11: 427
|
16 |
Kim K H, Jeon J B, Lee B J. Modified embedded-atom method interatomic potentials for Mg-X (X=Y, Sn, Ca) binary systems [J]. Calphad, 2015, 48: 27
|
17 |
Berendsen H J C, Postma J P M, van Gunsteren W F, et al. Molecular dynamics with coupling to an external bath [J]. J. Chem. Phys., 1984, 81: 3684
doi: 10.1063/1.448118
|
18 |
Fan H D, El-Awady J A, Wang Q Y. Towards further understanding of stacking fault tetrahedron absorption and defect-free channels—A molecular dynamics study [J]. J. Nucl. Mater., 2015, 458: 176
doi: 10.1016/j.jnucmat.2014.12.082
|
19 |
Cho J, Molinari J F, Anciaux G. Mobility law of dislocations with several character angles and temperatures in FCC aluminum [J]. Int. J. Plast., 2017, 90: 66
|
20 |
Thompson A P, Plimpton S J, Mattson W. General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions [J]. J. Chem. Phys., 2009, 131: 154107
doi: 10.1063/1.3245303
pmid: 20568847
|
21 |
Regazzoni G, Kocks U F, Follansbee P S. Dislocation kinetics at high strain rates [J]. Acta Metall., 1987, 35: 2865
|
22 |
Stukowski A. Visualization and analysis of atomistic simulation data with ovito-the open visualization tool [J]. Modelling Simul. Mater. Sci. Eng., 2010, 18: 015012
doi: 10.1093/nar/gky381
pmid: 29800260
|
23 |
Larsen P M, Schmidt S, Schiøtz J. Robust structural identification via polyhedral template matching [J]. Modell. Simul. Mater. Sci. Eng., 2016, 24: 055007
|
24 |
Hirth J P, Lothe J. Theory of Dislocations [M]. 2nd Ed., New York: John-Wiley, 1982: 73
|
25 |
Nabarro F R N. Dislocations in a simple cubic lattice [J]. Proc. Phys. Soc., 1947, 59: 256
doi: 10.1088/0959-5309/59/2/309
|
26 |
Kumar A, Morrow B M, McCabe R J, et al. An atomic-scale modeling and experimental study of <c+a> dislocations in Mg [J]. Mater. Sci. Eng., 2017, A695: 270
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|