Processing math: 100%
Please wait a minute...
金属学报  2024, Vol. 60 Issue (11): 1499-1511    DOI: 10.11900/0412.1961.2022.00352
  研究论文 本期目录 | 过刊浏览 |
Ni-Co-Zn三元合金的共沉积行为及耐蚀机制
周小卫(), 荆雪艳, 傅瑞雪, 王宇鑫
江苏科技大学 材料科学与工程学院 镇江 212003
Codeposition Behaviors and Anti-Corrosive Mechanism of Ni-Co-Zn Ternary Alloys
ZHOU Xiaowei(), JING Xueyan, FU Ruixue, WANG Yuxin
School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
引用本文:

周小卫, 荆雪艳, 傅瑞雪, 王宇鑫. Ni-Co-Zn三元合金的共沉积行为及耐蚀机制[J]. 金属学报, 2024, 60(11): 1499-1511.
Xiaowei ZHOU, Xueyan JING, Ruixue FU, Yuxin WANG. Codeposition Behaviors and Anti-Corrosive Mechanism of Ni-Co-Zn Ternary Alloys[J]. Acta Metall Sin, 2024, 60(11): 1499-1511.

全文: PDF(4095 KB)   HTML
摘要: 

鉴于电沉积Ni-Co-Zn三元合金中Zn2+与Ni2+、Co2+标准还原电势差异大,优先析出的Zn会吸附在电极表面并形成Zn(OH)2沉淀膜,阻碍后续Ni2+和Co2+还原放电,不利于合金共沉积,本工作以抗坏血酸(H2Asc)作为络合剂,通过调控镀液中Ni2+∶Co2+∶Zn2+摩尔浓度比,旨在实现Ni-Co-Zn三元共沉积。利用SEM、XRD等方法分析了离子摩尔浓度比和H2Asc浓度对电沉积Ni-Co-Zn合金表面形貌和织构生长的影响。结果表明,当Ni2+∶Co2+∶Zn2+摩尔浓度比为4∶5∶1时,合金镀层中Ni含量高达12.2% (质量分数),晶粒细化致密。当H2Asc浓度为5 g/L时,织构生长呈类菜花球状,晶粒尺寸约为300 nm,具有最小的生长应力9.04 MPa。镀层中Zn含量随H2Asc浓度增加而显著降低,而Ni + Co含量则逐渐上升,这主要归因于镀液中Zn2+与HAsc-络合成了配位化合物[ZnHAsc]+并抑制了Zn的择优生长,留给Ni或Co更多的活性位点。合金中存在γ-Ni5Zn21、CoZn13和Ni3Zn22等金属间化合物,说明适量H2Asc的加入有助于实现合金共沉积。添加H2Asc后试样的自腐蚀电位(Ecorr)均大幅正移,降低了腐蚀驱动力;当H2Asc添加量为5 g/L时,显示出最佳的耐腐蚀性能,其中Ecorr正移了约200 mV,自腐蚀电流较未添加时降低了约75%。添加H2Asc后试样的电化学阻抗谱(EIS)均由大半径的容抗弧和感抗弧组成,这是由于合金镀层中存在γ-Ni5Zn21相以及浸泡过程中形成的[Zn(OH)4]2-胶质微溶腐蚀产物,通过絮凝作用沉淀下来并包覆在活性Zn溶解后的活性表面,减少Cl-向镀层内部扩散渗透的渠道,提高了其抗腐蚀性能。

关键词 Ni-Co-Zn三元合金异常共沉积H2Asc络合剂耐腐蚀性    
Abstract

Zinc-metal alloys with ferrous group metals such as Ni, Co, and Fe have been used for industrial applications due to their better corrosion performance compared to pure Zn. Among them, ternary Zn-Ni-Co alloys, which have superior corrosion resistance and magnetic features, have attracted extensive attention, and have been used as functional films in electro-mechanical system (EMS) devices and magnetic recording media. However, large differences in the reduction peak potential between Zn2+, Ni2+, and Co2+ restrict their codeposition because Zn-competitive adsorption hinders the discharge transfer of Ni2+ or Co2+. In view of the aforementioned statements, the effects of molar concentration ratios of Ni2+ : Co2+ : Zn2+ and the ascorbic acid (H2Asc) concentrations in the bath on the surface features and textures of the Zn-Ni-Co alloys were assessed and characterized using FE-SEM, XRD, etc. Results showed that under the optimized condition of Ni2+ : Co2+ : Zn2+ = 4 : 5 : 1, the Ni content in the Ni-Co-Zn deposits reached 12.2%, which was instrumental in grain refinement. From the cyclic voltammetry curves, the potential of the reduction peak positively shifted from -1.47 V to -1.28 V, validating better codeposition with an appropriate H2Asc concentration. SEM observations depicted a cauliflower-like texture with a crystal size of ~300 nm at a minimum growing stress of 9.04 MPa for the samples with 5 g/L H2Asc concentration. From EDS analysis, with increasing H2Asc concentration from 1 g/L to 5 g/L, the Ni + Co content in the Ni-Co-Zn deposits gradually increased but their Zn content decreased, which was attributed to the addition of H2Asc in the form of [ZnHAsc]+ to offer more active sites for Ni or Co growth. Intermetallic compounds such as γ-Ni5Zn21, CoZn13, and Ni3Zn22 were determined using XRD. The anticorrosive behavior was evaluated via potentiodynamic polarization (Tafel) tests in a 3.5%NaCl solution. The free corrosion potential (Ecorr) positively shifted by ~200 mV for the samples with 5 g/L H2Asc concentration and their corrosion current density (icorr) has declined about 75% than those of the samples without H2Asc. EIS results revealed a capacitive arc followed by a diffusion arc for the samples without H2Asc, indicating pitting corrosion, and an inductive arc attached to a larger-radius capacitive arc for the samples with different H2Asc concentrations, showing better corrosion resistance. This was due to the coexistence of the γ-Ni5Zn21 intermetallic phase and insoluble products [Zn(OH)4]2- that fully covered the Zn-dissolved active area to complete the corrosive channels via Cl- diffusion, thus increasing the corrosion resistance of the Ni-Co-Zn alloys.

Key wordsNi-Co-Zn alloy    anomalous codeposition    H2Asc complexing agent    corrosion resistance
收稿日期: 2022-07-29     
ZTFLH:  TB332  
基金资助:国家自然科学基金项目(51605203)
通讯作者: 周小卫,zhouxiaowei901@just.edu.cn,主要从事纳米晶镀层性能的研究
Corresponding author: ZHOU Xiaowei, associate professor, Tel: (0511)84401188, E-mail: zhouxiaowei901@just.edu.cn
作者简介: 周小卫,男,1983年生,副教授,博士
图1  不同合金离子摩尔比条件下Ni-Co-Zn三元合金表面形貌的SEM像
Ni ∶ Co ∶ ZnNiCoZn
1 ∶ 1 ∶ 13.702.3893.92
2 ∶ 6 ∶ 15.243.0591.71
4 ∶ 1 ∶ 27.136.8186.06
4 ∶ 5 ∶ 112.1420.2267.64
表1  离子摩尔浓度比对Ni-Co-Zn合金成分的影响 (atomic fraction / %)
图2  不同H2Asc浓度条件下Ni-Co-Zn合金镀液的循环伏安曲线
图3  不同H2Asc浓度条件下合金镀层表面形貌SEM像和EDS分析
图4  不同H2Asc浓度对电沉积Ni-Co-Zn合金织构生长影响的XRD谱
图5  不同H2Asc浓度对生长应力影响的镀层表面OM像
图6  不同H2Asc浓度条件下镀层试样表面的SEM像和EDS分析
图7  不同H2Asc浓度条件下合金镀层试样的动电位极化曲线

c

g·L-1

bc

mV·dec-1

ba

mV·dec-1

Ecorr

mV

icorr

10-6 A·cm-2

Rp

kΩ

0149.14158.79-1127.91.5821.10
3148.33161.15-1117.50.7544.69
5159.32174.13-979.20.4083.10
10121.4764.98-1038.70.4345.84
表2  由极化曲线得到的各镀层相关电化学参数
图8  不同H2Asc浓度条件下电沉积的合金镀层试样的电化学阻抗谱(EIS)
图9  拟合EIS采用的等效电路图

c

g·L-1

Rs

Ω·cm2

CPEsei

Ω-1·snf·cm-2

nf

Rpf

Ω·cm2

CPEdl

Ω-1·snd·cm-2

nd

Rct

Ω·cm2

L

H·cm-2

W

Ω·cm2·s0.5

Error|Z|

10-3

011.405.83 × 10-30.45332.252.64 × 10-70.4237.76-2.33 × 10-95.562
311.176.44 × 10-30.72624.169.36 × 10-50.6967.8930.65-5.375
58.772.05 × 10-30.729172.12.46 × 10-30.37018.6240.71-3.734
1011.197.93 × 10-30.67032.467.96 × 10-50.7117.624.02-5.270
表3  基于等效电路的EIS拟合结果
图10  静态浸泡7 d后试样表面腐蚀产物的XRD谱
图11  静态浸泡过程中Ni-Co-Zn合金镀层的腐蚀机理示意图
1 Abou-Krisha M M. Influence of Ni2+ concentration and deposition potential on the characterization of thin electrodeposited Zn-Ni-Co coatings [J]. Mater. Chem. Phys., 2011, 125: 621
2 Younan M M. Surface microstructure and corrosion resistance of electrodeposited ternary Zn-Ni-Co alloy [J]. J. Appl. Electrochem., 2000, 30: 55
3 Li W J, Yang X H, Wang F Y. Study on electrodeposition preparation and corrosion resistance of Zn-Ni alloy [J]. Electroplat. Pollut. Control, 2017, 37(3): 13
3 李文娟, 杨小红, 王凤英. 电沉积制备Zn-Ni合金及其耐蚀性的研究 [J]. 电镀与环保, 2017, 37(3): 13
4 Maksimović V M, Kusigerski V B, Stoiljković M M, et al. Influence of Ni2+/Co2+ ratio in electrolyte on morphology, structure and magnetic properties of electrolytically produced Ni-Co alloy powders [J]. Trans. Nonferrous Met. Soc. China, 2020, 30: 1046
5 Bajat J B, Stanković S, Jokić B M. Electrochemical deposition and corrosion stability of Zn-Co alloys [J]. J. Solid State Electrochem., 2009, 13: 755
6 Yang Z H, Liao J P, Wang S W, et al. Effects of dispersant on performance of Ni-Zn batteries [J]. J. Cent. South Univ. Technol., 2010, 17: 930
7 Feng Z B, Ren L L, Zhang J Q, et al. Influence of additives on microstructure, mechanical and tribological properties of nanocrystalline Zn-Ni coatings in a novel alkaline bath [J]. RSC Adv., 2016, 6: 42029
8 Zhang H, Wu D, Zhang L, et al. Wafer level electrodeposion of Fe-Ni novel UBM films [J]. Acta Metall Sin., 2012, 48: 1273
8 张 昊, 吴 迪, 张 黎 等. Fe-Ni新型UBM薄膜的晶圆电镀工艺研究 [J]. 金属学报, 2012, 48: 1273
9 Wykpis K. Influence of Co2+ ions concentration in a galvanic bath on properties of electrolytic Zn-Ni-Co coatings [J]. Surf. Interface Anal., 2014, 46: 746
10 Qi H D, Guo Z, Lu S, et al. Effect of sodium citrate on Zn-Ni-Mn alloy electrodeposition behavior [J]. Surf. Technol., 2019, 48(3): 201
10 齐海东, 郭 昭, 卢 帅 等. 柠檬酸钠对Zn-Ni-Mn合金电沉积行为的影响 [J]. 表面技术, 2019, 48(3): 201
11 Yu J K, Zhao L L, Sun H. Effect of processing parameters and ascorbic acid on the electrodeposition NiFeW alloy coatings [J]. Rare Met. Mater. Eng., 2018, 47: 436
12 Eliaz N, Venkatakrishna K, Hegde A C. Electroplating and characterization of Zn-Ni, Zn-Co and Zn-Ni-Co alloys [J]. Surf. Coat. Technol., 2010, 205: 1969
13 Bhat R S, Shet V B. Development and characterization of Zn-Ni, Zn-Co and Zn-Ni-Co coatings [J]. Surf. Eng., 2020, 36: 429
doi: 10.1080/02670844.2019.1680037
14 Zhang Y H, Cheng P F, Meng F J, et al. Experimental study on electroforming of Ni-Co alloy with low internal stress [J]. J. Henan Inst. Technol., 2020, 28(4): 21
14 张艳华, 程鹏飞, 孟凡净 等. 电铸低内应力Ni-Co合金实验研究 [J]. 河南工学院学报, 2020, 28(4): 21
15 Abou-Krisha M M. Electrochemical studies of zinc-nickel codeposition in sulphate bath [J]. Appl. Surf. Sci., 2005, 252: 1035
16 Dikici T, Culha O, Toparli M. Study of the mechanical and structural properties of Zn-Ni-Co ternary alloy electroplating [J]. J. Coat. Technol. Res., 2010, 7: 787
17 Tsybulskaya L S, Gaevskaya T V, Purovskaya O G, et al. Electrochemical deposition of zinc-nickel alloy coatings in a polyligand alkaline bath [J]. Surf. Coat. Technol., 2008, 203: 234
18 Szczygiel B, Laszczynska A. Influence of bath concentration and pH on electrodeposition process of ternary Zn-Ni-Mo alloy coatings [J]. Trans. IMF, 2014, 92: 196
19 Xing L H, Li D Y, Li N, et al. Effect of ascorbic acid on stability of sulfate nickel-iron alloy electroplating bath [J]. Electroplat. Finish., 2018, 37: 526
19 邢乐红, 黎德育, 李 宁 等. 抗坏血酸对硫酸盐体系镍-铁合金镀液稳定性的影响 [J]. 电镀与涂饰, 2018, 37: 526
20 Rodríguez C A, Tobosque P, Maril M, et al. Effect of different complexing agents on Pb-Co thin-film electrodeposition [J]. J. Mater. Sci., 2017, 52: 3388
21 Chen Y D. Estimation of stability constants of metal complexes [J]. Chem. Res. Chin. Univ., 1980, 1(1): 9
21 陈与德. 络合物稳定常数的计算 [J]. 高等学校化学学报, 1980, 1(1): 9
22 Gnanamuthu R M, Lee C W. Electrochemical lithium storage performance of ternary Zn-Co-Ni alloy thin film as negative electrodes by electrodeposition method [J]. J. Alloys Compd., 2011, 509: 8933
23 Zhou X W, Ouyang C. Wear and corrosive behaviors of electroless Ni-LaCl3 composites on nanoporous ATO surface of Ti substrate [J]. J. Mater. Eng. Perform., 2019, 28: 2499
24 Kurachi M, Fujiwara K. Internal stress in nickel-zinc alloys electrodeposited from sulphate solutions [J]. Trans. Jpn. Inst. Met., 1970, 11: 311.
25 Stern M, Geary A L. Electrochemical polarization: I. A theoretical analysis of the shape of polarization curves [J]. J. Electrochem. Soc., 1957, 104: 56
26 Shao Y, Guo P Y, Sun H, et al. Structure and properties of composite Ni-Co-Mn coatings on metal interconnects by electrodeposition [J]. J. Alloys Compd., 2019, 811: 152006
27 Zhou X W, Wang Y X. LaCl3-modified Ni deposits on 3D-heterotypic porous Ti surface for strengthening its mechanical and electrochemical properties [J]. Surf. Coat. Technol., 2019, 375: 652
28 Conrad H, Corbett J, Golden T D. Electrochemical deposition of γ-phase zinc-nickel alloys from alkaline aolution [J]. J. Electrochem. Soc., 2011, 159: C29
29 Tozar A, Karahan İ H. Structural and corrosion protection properties of electrochemically deposited nano-sized Zn-Ni alloy coatings [J]. Appl. Surf. Sci., 2014, 318: 15
30 Roventi G, Cecchini R, Fabrizi A, et al. Electrodeposition of nickel-zinc alloy coatings with high nickel content [J]. Surf. Coat. Technol., 2015, 276: 1
31 Byk T V, Gaevskaya T V, Tsybulskaya L S. Effect of electrodeposition conditions on the composition, microstructure, and corrosion resistance of Zn-Ni alloy coatings [J]. Surf. Coat. Technol., 2008, 202: 5817
32 Wang D P, Shen J W, Chen Z, et al. Relationship of corrosion behavior between single-phase equiatomic CoCrNi, CoCrNiFe, CoCrNiFeMn alloys and their constituents in NaCl solution [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 1574
33 Abd El-Lateef H M, El-Sayed A R, Mohran H S. Role of Ni content in improvement of corrosion resistance of Zn-Ni alloy in 3.5% NaCl solution. Part I: Polarization and impedance studies [J]. Trans. Nonferrous Met. Soc. China, 2015, 25: 2807
34 Kwon M, Jo D H, Cho S H, et al. Characterization of the influence of Ni content on the corrosion resistance of electrodeposited Zn-Ni alloy coatings [J]. Surf. Coat. Technol., 2016, 288: 163
[1] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[2] 朱雯婷, 崔君军, 陈振业, 冯阳, 赵阳, 陈礼清. 690 MPa级高强韧低碳微合金建筑结构钢设计及性能[J]. 金属学报, 2021, 57(3): 340-352.
[3] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[4] 王垚,李春福,林元华. Cr对Fe-Cr合金耐蚀性能影响的电子理论研究[J]. 金属学报, 2017, 53(5): 622-630.
[5] 夏超, 钱仕, 王东辉, 刘宣勇. 碳离子注入医用Ti性能研究[J]. 金属学报, 2017, 53(10): 1393-1401.
[6] 徐伟,路新,杜艳霞,孟庆宇,黎鸣,曲选辉. 粉末冶金制备Ti-Fe二元合金的耐腐蚀性能[J]. 金属学报, 2017, 53(1): 38-46.
[7] 张骏,姚美意,冯炫凯,王志刚,黄娇,戴训,张金龙,周邦新. Zr-Sn-Fe-Cr-(Nb)合金在500 ℃过热蒸汽中的腐蚀各向异性研究*[J]. 金属学报, 2016, 52(12): 1565-1571.
[8] 苟少秋,周邦新,谢世敬,徐龙,姚美意,李强. Zr-4合金在LiOH水溶液中腐蚀时氧化膜生长各向异性的研究*[J]. 金属学报, 2015, 51(8): 993-1000.
[9] 王波阳,周邦新,王桢,黄娇,姚美意,周军. Zr-0.72Sn-0.32Fe-0.14Cr-xNb合金在500 ℃过热蒸汽中的耐腐蚀性能*[J]. 金属学报, 2015, 51(12): 1545-1552.
[10] 韦天国,龙冲生,苗志,刘云明,栾佰峰. Zr-0.4Fe-1.0Cr-x Mo合金在500℃和10.3 MPa水蒸汽中的腐蚀行为[J]. 金属学报, 2013, 49(6): 717-724.
[11] 康志新,郭明杰. 热氧化法制备超疏水Ti表面及其耐腐蚀性[J]. 金属学报, 2013, 49(5): 629-634.
[12] 张金龙,谢兴飞,姚美意,周邦新,彭剑超,梁雪. Zr-1Nb-0.7Sn-0.03Fe-xGe合金在360 ℃ LiOH水溶液中耐腐蚀性能的研究[J]. 金属学报, 2013, 29(4): 443-450.
[13] 牛云松,魏杰,赵健,胡家秀,于志明. 超声辅助电镀法纳米叠层Ni镀膜的制备与性能[J]. 金属学报, 2013, 49(12): 1617-1622.
[14] 朱莉,姚美意,孙国成,陈文觉,张金龙,周邦新. 添加Bi对Zr-1Nb合金在360 ℃和18.6 MPa去离子水中耐腐蚀性能的影响[J]. 金属学报, 2013, 49(1): 51-57.
[15] 姚美意 邹玲红 谢兴飞 张金龙 彭剑超 周邦新. 添加Bi对Zr-4合金在400 ℃/10.3 MPa过热蒸汽中耐腐蚀性能的影响[J]. 金属学报, 2012, 48(9): 1097-1102.