Please wait a minute...
金属学报  2012, Vol. 48 Issue (9): 1097-1102    DOI: 10.3724/SP.J.1037.2012.00176
  论文 本期目录 | 过刊浏览 |
添加Bi对Zr-4合金在400 ℃/10.3 MPa过热蒸汽中耐腐蚀性能的影响
姚美意1, 2), 邹玲红1, 2), 谢兴飞1, 2), 张金龙1, 2), 彭剑超1, 2), 周邦新1, 2)
1) 上海大学微结构重点实验室, 上海 200444
2) 上海大学材料研究所, 上海 200072
EFFECT OF Bi ADDITION ON THE CORROSION RESISTANCE OF Zr-4 IN SUPERHEATED STEAM AT 400 ℃/10.3 MPa
YAO Meiyi1, 2),  ZOU Linghong1, 2),  XIE Xingfei1, 2),  ZHANG Jinlong1, 2),  PENG Jianchao1, 2),  ZHOU Bangxin1, 2)
1) Laboratory for Microstructures, Shanghai University, Shanghai 200444
2) Institute of Materials, Shanghai University, Shanghai 200072
全文: PDF(1832 KB)  
摘要: 在Zr-4合金基础上添加0.1%-0.5%Bi(质量分数)制备成Zr-4+xBi合金, 用高压釜腐蚀实验研究了 Bi含量对Zr-4+xBi合金在400 ℃/10.3 MPa过热蒸汽中耐腐蚀性能的影响; 用TEM, EDS和SEM观察了合金和合金腐蚀后氧化膜的显微组织. 结果表明: 随着Bi含量的增加, Zr-4+xBi合金中第二相的尺寸和形状变化不大, 但数量增多, 并出现了不同成分的第二相, 包括Zr(Fe, Cr)2, Zr-Fe-Cr-Bi, Zr-Fe-Sn-Bi和 Zr-Fe-Cr-Sn-Bi. 在Zr-4+0.1Bi合金中检测到了含Bi的第二相, 这说明580 ℃时Bi在Zr-4+$x$Bi合金α-Zr基体中的固溶度小于0.1%. 另外, 适量Bi的添加促进了原先固溶在α-Zr基体中Sn的析出. 与Zr-4合金相比, 在Zr-4中添加0.1%-0.5% Bi后合金的耐腐蚀性能反而下降, 并随着Bi含量的增加耐腐蚀<性能恶化趋势越显著, 这说明Zr-4合金中添加Bi并不能改善合金的耐腐蚀性能, 反而产生有害的影响, 这应该与含Bi第二相和同时含有Bi, Sn第二相的析出有关.
关键词 锆合金Bi耐腐蚀性能显微组织    
Abstract:The effect of Bi contents on the corrosion resistance of Zr-4+xBi (x=0.1%-0.5%, mass fraction)
alloys, which were prepared by adding Bi to Zr-4, was investigated in superheated steam at 400 ℃ and
10.3 MPa by autoclave tests. The microstructures of the alloys and fracture surface morphology of the oxide film
formed on the alloys were observed by TEM, EDS and SEM. The results show that with the increase of Bi content,
the second phase particles (SPPs) are almost the same in size and shape, but increase in amount and vary in
composition, including Zr(Fe, Cr)2, Zr-Fe-Cr-Bi, Zr-Fe-Sn-Bi and Zr-Fe-Cr-Sn-Bi. Even in the
Zr-4+0.1Bi alloy, Bi--containing SPPs were detected. This indicates that the solid solubility of Bi in α-Zr
matrix of Zr-4+xBi alloys is less than 0.1% at 580 ℃. Moreover, the addition of Bi promotes the precipitation
of Sn which originally dissolved in the α-Zr matrix of Zr-4. Compared with Zr-4, the addition
of Bi makes the corrosion resistance worse, and it becomes more obvious with the increase of Bi content. This
illustrates that the addition of Bi can not improve the corrosion resistance, on the contrary, it brings a harmful
influence. This may be related to the precipitation of the Bi-containing and Bi-Sn-containing SPPs.
Key wordszirconium alloy    Bi, corrosion resistance    microstructure
收稿日期: 2012-04-06     
ZTFLH: 

TL341

 
基金资助:

国家自然科学基金项目50971084, 国家先进压水堆重大专项2011ZX06004--023和上海市重点学科建设项目S30107资助

通讯作者: 姚美意     E-mail: yaomeiyi123@163.com
Corresponding author: Mei-Yi YAO     E-mail: yaomeiyi123@163.com
作者简介: 姚美意, 女, 1973年生, 副研究员

引用本文:

姚美意 邹玲红 谢兴飞 张金龙 彭剑超 周邦新. 添加Bi对Zr-4合金在400 ℃/10.3 MPa过热蒸汽中耐腐蚀性能的影响[J]. 金属学报, 2012, 48(9): 1097-1102.
YAO Mei-Yi, ZOU Ling-Hong, XIE Xin-Fei, ZHANG Jin-Long, PENG Jian-Tiao, ZHOU Bang-Xin. EFFECT OF Bi ADDITION ON THE CORROSION RESISTANCE OF Zr-4 IN SUPERHEATED STEAM AT 400 ℃/10.3 MPa. Acta Metall Sin, 2012, 48(9): 1097-1102.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2012.00176      或      https://www.ams.org.cn/CN/Y2012/V48/I9/1097

[1] Sabol G P. In: Rudling P, Kammenzind B eds., Zirconium in the Nuclear Industry: Fourteenth International Symposium, ASTM STP 1467, Stockholm: ASTM International, 2004: 3

[2] Sabol G P, Comstock R J, Weiner R A. In: Garde A M, Bradley E R eds., Zirconium in the Nuclear Industry: Tenth International Symposium, ASTM STP 1245, Baltimore, MD: ASTM International, 1994: 724

[3] Nikulina A V, Markelov V A, Peregud M M. In: Bradley E R, Sabol G P eds., Zirconium in the Nuclear Industry: Eleventh International Symposium, ASTM STP 1295, Garmisch–Partenkirchen, Germany: ASTM International, 1996: 785

[4] Zhao W J, Miao Z, Jiang H M, Yu X W, Li W J, Li C, Zhou B X. J Chin Soc Corros Prot, 2002; 22: 124

(赵文金, 苗志, 蒋宏曼, 于晓卫, 李卫军, 李聪, 周邦新. 中国腐蚀与防护学报, 2002; 22: 124)

[5] Park J–Y, Yoo S J, Choi B–K, Jeong Y H. J Nucl Mater, 2008; 373: 343

[6] Hong H S, Moon J S, Kim S J, Lee K S. J Nucl Mater, 2001; 297: 113

[7] Yao M Y, Li S L, Zhang X, Peng J C, Zhou B X, Zhao X S, Shen J Y. Acta Metall Sin, 2011; 47: 865

(姚美意, 李士炉, 张欣, 彭剑超, 周邦新, 赵旭山, 沈剑韵. 金属学报, 2011; 47: 865)

[8] Li S L, Yao M Y, Zhang X, Geng J Q, Peng J C, Zhou B X. Acta Metall Sin, 2011; 47: 163

(李士炉, 姚美意, 张欣, 耿建桥, 彭剑超, 周邦新. 金属学报, 2011; 47: 163)

[9] Li P Z, Li Z K. Rare Met Mater Eng, 1998; 27: 356

(李佩志, 李中奎. 稀有金属材料与工程, 1998; 27: 356)

[10] Zhou B X, Li Q, Yao M Y, Liu W Q. Nucl Power Eng, 2005; 26(4): 364

(周邦新, 李 强, 姚美意, 刘文庆. 核动力工程, 2005; 26(4): 364)

[11] Li C, Li P, Zhou B X, Zhao W J, Peng Q, Ying S H, Shen B L. Nucl Power Eng, 2002; 23(4): 20

(李聪, 李蓓, 周邦新, 赵文金, 彭 倩, 应诗浩, 沈保罗. 核动力工程, 2002; 23(4): 20)

[12] Foster J P, Dougherty J, Burke M G. J Nucl Mater, 1990; 173: 164

[13] Charquet D. In: Sabol G P, Moan G D eds., Zirconium in the Nuclear Industry: Twelfth International Symposium, ASTM STP 1354, West Conshohocken: ASTM International, 2000: 3

[14] Eucken C M, Finden P T. In: Van Swam L F P, Eucken C M eds., Zirconium in the Nuclear Industry: Eighth International Symposium, ASTM STP 1023, Philadelphia: ASTM International, 1989: 113

[15] Takeda K, Anada H. In: Sabol G P, Moan G D eds., Zirconium in the Nuclear Industry: Twelfth International Symposium, ASTM STP 1354, West Conshohocken: ASTM International, 2000: 592

[16] Garzarolli F, Broy Y, Busch R A. In: Bradley E R, Sabol G P Eds., Zirconium in the Nuclear Industry: Eleventh International Symposium, ASTM STP 1295, Garmisch– Partenkirchen, Germany: ASTM International, 1996: 850

[17] Graham R A, Tosdale J P, Finden P T L F P. In: Van Swam L F P, Eucken C M eds., Zirconium in the Nuclear Industry: Eighth International Symposium, ASTM STP 1023, Philadelphia: ASTM International, 1989: 334

[18] Yang W D. Reactor Materials Science. 2nd Ed., Beijing: Atomic Energy Press, 2006: 260

(杨文斗. 反应堆材料学. 第二版, 北京: 原子能出版社, 2006: 260)

[19] Zhou B X, Li Q, Liu W Q, Yao M Y, Chu Y L. Rare Met Mater Eng, 2006; 35: 1009

(周邦新, 李强, 刘文庆, 姚美意, 褚于良. 稀有金属材料与工程, 2006; 35: 1009)

[20] Cox B. J Nucl Mater, 1969; 29: 50

[21] Zhou B X, Li Q, Yao M Y, Liu W Q, Chu Y L. J ASTM Int, 2008; 5: 360

[22] Charquet D, Hanh R, Ortlib E. In: Van Swam L F P, Eucken C M eds., Zirconium in the Nuclear Industry, Eighth International Symposium, ASTM STP 1023, Philadelphia: ASTM International, 1989: 405

[23] Yao M Y, Zhou B X, Li Q, Liu W Q, Yu W J, Chu Y L. J Nucl Mater, 2008; 374: 197

[24] Shen Y F, Yao M Y, Zhang X, Li Q, Zhou B X, Zhao W J. Acta Metall Sin, 2011; 47: 899

(沈月锋, 姚美意, 张 欣, 李强, 周邦新, 赵文金. 金属学报, 2011; 47: 899)
[1] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[2] 李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
[3] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[4] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[5] 钱月,孙蓉蓉,张文怀,姚美意,张金龙,周邦新,仇云龙,杨健,成国光,董建新. NbFe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响[J]. 金属学报, 2020, 56(3): 321-332.
[6] 姚美意,张兴旺,侯可可,张金龙,胡鹏飞,彭剑超,周邦新. Zr-0.75Sn-0.35Fe-0.15Cr合金在250 ℃去离子水中的初期腐蚀行为[J]. 金属学报, 2020, 56(2): 221-230.
[7] 肖宏,许朋朋,祁梓宸,吴宗河,赵云鹏. 感应加热异温轧制制备钢/铝复合板[J]. 金属学报, 2020, 56(2): 231-239.
[8] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[9] 黎旺,孙倩,江鸿翔,赵九洲. Al-Bi合金凝固过程及微合金化元素Sn的影响[J]. 金属学报, 2019, 55(7): 831-839.
[10] 黄森森,马英杰,张仕林,齐敏,雷家峰,宗亚平,杨锐. α+β两相钛合金元素再分配行为及其对显微组织和力学性能的影响[J]. 金属学报, 2019, 55(6): 741-750.
[11] 刘巧沐,黄顺洲,刘芳,杨艳,南宏强,张东,孙文儒. B含量对K417G合金凝固过程中组织演变和力学性能的影响[J]. 金属学报, 2019, 55(6): 720-728.
[12] 蓝春波,梁家能,劳远侠,谭登峰,黄春艳,莫羡忠,庞锦英. 冷轧态Ti-35Nb-2Zr-0.3O合金的异常热膨胀行为[J]. 金属学报, 2019, 55(6): 701-708.
[13] 刘征,刘建荣,赵子博,王磊,王清江,杨锐. 电子束快速成形制备TC4合金的组织和拉伸性能分析[J]. 金属学报, 2019, 55(6): 692-700.
[14] 安同邦,魏金山,单际国,田志凌. 保护气成分对1000 MPa级高强熔敷金属组织特征的影响[J]. 金属学报, 2019, 55(5): 575-584.
[15] 任德春, 苏虎虎, 张慧博, 王健, 金伟, 杨锐. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响[J]. 金属学报, 2019, 55(4): 480-488.