Please wait a minute...
金属学报  2015, Vol. 51 Issue (8): 993-1000    DOI: 10.11900/0412.1961.2015.00049
  本期目录 | 过刊浏览 |
Zr-4合金在LiOH水溶液中腐蚀时氧化膜生长各向异性的研究*
苟少秋1,周邦新1,2(),谢世敬1,徐龙1,2,姚美意1,李强1,2
2 上海大学微结构重点实验室, 上海 200444
INVESTIGATION OF THE ANISOTROPIC GROWTH OF OXIDE LAYERS FORMED ON Zr-4 ALLOYS CORRODED IN LiOH AQUEOUS SOLUTION
Shaoqiu GOU1,Bangxin ZHOU1,2(),Shijing XIE1,Long XU1,2,Meiyi YAO1,Qiang LI1,2
1 Institute of Materials, Shanghai University, Shanghai 200072
2 Laboratory for Microstructures, Shanghai University, Shanghai 200444
引用本文:

苟少秋,周邦新,谢世敬,徐龙,姚美意,李强. Zr-4合金在LiOH水溶液中腐蚀时氧化膜生长各向异性的研究*[J]. 金属学报, 2015, 51(8): 993-1000.
Shaoqiu GOU, Bangxin ZHOU, Shijing XIE, Long XU, Meiyi YAO, Qiang LI. INVESTIGATION OF THE ANISOTROPIC GROWTH OF OXIDE LAYERS FORMED ON Zr-4 ALLOYS CORRODED IN LiOH AQUEOUS SOLUTION[J]. Acta Metall Sin, 2015, 51(8): 993-1000.

全文: PDF(7947 KB)   HTML
摘要: 

Zr-4合金大晶粒样品在360 ℃和18.6 MPa 的0.01 mol/L LiOH水溶液中经过70和160 d腐蚀后, 采用EBSD, SEM和HRTEM等方法, 研究了氧化膜的显微组织和晶体结构, 以及氧化膜的厚度与金属晶粒表面取向的关系. 结果表明, 样品经过160 d腐蚀后, 金属晶粒表面取向在靠近(0001)附近时氧化膜相对较厚, 氧化膜的生长显示出明显的各向异性特征, 但是在腐蚀70 d后这种特征还不明显. 从腐蚀70 d后的样品中选取了表面取向接近(0001), (1010)和(1120)的金属晶粒, 研究了它们表面上氧化膜/金属界面处的显微组织, 不同取向金属晶粒表面上形成氧化膜的显微组织存在一定差别, 在取向接近(0001)的晶粒表面生成的氧化膜中的m-ZrO2柱状晶晶粒之间的取向差比较大, 氧化膜显微组织和晶体结构非常复杂, 除主要的m-ZrO2外, 还存在c-ZrO2, t-ZrO2以及亚氧化物Zr3O. 氧化膜显微组织在腐蚀过程中不断发生演化, 这会影响氧离子的扩散, 进而影响氧化膜的生长, 这种显微组织的演化过程还会受到氧化膜在不同取向晶粒表面上形成初期显微组织差别以及腐蚀时水化学条件的影响, 这是Zr-4在LiOH水溶液中腐蚀时会出现氧化膜生长各向异性特征的主要原因.

关键词 Zr-4耐腐蚀性各向异性生长氧化膜显微组织    
Abstract

Zr-4 coarse-grained specimens were corroded in static autoclave at 360 ℃, 18.6 MPa in 0.01 mol/L LiOH aqueous solution for 70 and 160 d exposure. EBSD, SEM and HRTEM were used to investigate the microstructures and crystal structures of oxide layers, and the relationships between the oxide thickness and the grain orientation of the metal matrix. The results showed that the oxide layers formed on the grain surfaces with the orientations nearby basal plane (0001) were thicker, and exhibited a prominent anisotropic for the oxide growth when Zr-4 specimens were corroded in LiOH aqueous solution for 160 d, but this was not the case for 70 d. The grains with the surface orientation nearby (0001), (1010) and (1120) were selected from the specimens corroded for 70 d to investigate the effect of metal grain orientation on the microstructure of oxide layers. The results showed that the crystal structure and microstructure of oxide layers formed on different metal grains were obviously different, and the scattering of m-ZrO2 columnar grain orientations in the oxide layers formed on near basal plane (0001) was wider than that on near prismatic plane (1010) and (1120). Besides the majority of m-ZrO2, c-ZrO2, t-ZrO2 and sub-oxide phase Zr3O were also detected at the oxide/metal interface, and it showed that the microstructure and crystal structure of oxide layers were very complex. The microstructural evolution of oxide layers will affect the diffusion of oxygen and subsequently the growth of oxide. Therefore, the microstructural evolution of oxide layers, which was affected by the different microstructure of oxide layers formed initially on grains and the water chemistry of corrosion tests, resulted in the anisotropic growth of oxide layers when Zr-4 specimens were corroded in LiOH aqueous solution in subsequent corrosion tests.

Key wordsZr-4    corrosion resistance    anisotropic growth    oxide layer    microstructure
    
基金资助:* 国家自然科学基金项目 51171102和51271104资助
图1  Zr-4大晶粒样品在360 ℃的LiOH水溶液中腐蚀70和160 d后氧化膜厚度与金属晶粒取向之间关系的反极图
图2  Zr-4大晶粒样品在360 ℃的LiOH水溶液中腐蚀160 d 后氧化膜的表面形貌和截面SEM像
图3  Zr-4大晶粒样品腐蚀70 d后(0001), (1010)和(1210)面上生长的氧化膜的SAED谱和相应晶面上氧化膜中m-ZrO2柱状晶的TEM暗场像
图4  (1010)面上氧化膜/金属(O/M)界面处氧化膜的HRTEM像和快速Fourier变换(FFT)图
图5  图4b中方框处c-ZrO2的(200)和(111)晶面的反Fourier变换图及应变分布图
图6  Zr-4大晶粒样品在360 ℃的LiOH水溶液中腐蚀160 d时较厚以及较薄的氧化膜断口形貌
[1] Han J H, Rheem K S. J Nucl Mater, 1994; 217: 197
[2] Kim H J, Kim T H, Jeong Y H. J Nucl Mater, 2002; 306: 44
[3] Bakradze G, Jeurgens P H, Mittemeijer J. Surf Interface Anal, 2010; 42: 588
[4] Charquet D, Tricot R, Wadier J F. In: Van Swam L F P, Eucken C M eds., Zirconium in the Nuclear Industry, 8th International Symposium, ASTM STP 1023, West Conshohocken, PA: ASTM International, 1989: 374
[5] Sun G C, Zhou B X, Yao M Y, Xie S J, Li Q. Acta Metall Sin, 2012; 48: 1103 (孙国成, 周邦新, 姚美意, 谢世敬, 李 强. 金属学报, 2012; 48: 1103)
[6] Favergeon J, Montesin T, Bertrand G. Oxid Met, 2005; 64: 253
[7] Zhang C S, Flinn B J, Mitchell I V, Norton P R. Surf Sci, 1991; 245: 373
[8] Zhou B X, Peng J C, Yao M Y, Li Q, Xia S, Du C X, Xu G. In: Limbck M, Barbéris P eds., Zirconium in the Nuclear Industry: 16th International Symposium, ASTM STP 1529, Bridgeport: ASTM International, 2011: 620
[9] Garvie R C. J Phys Chem, 1965; 69: 218
[10] Preuss M, Frankel P, Lozano-Perez S, Hudson D, Polatidis E, Ni N, Wei J, English C, Storer S, Chong K B, Fitzpatrick M, Wang P, Smith J, Grovenor C, Smith G, Sykes J, Cottis B, Lyon S, Hallstadius L, Comstock R J, Ambard A, Blat-Yrieix M. In: Limbck M, Barbéris P eds., Zirconium in the Nuclear Industry: 16th International Symposium, ASTM STP 1529, Bridgeport: ASTM International, 2011: 649
[11] Zhang H X, Fruchart D, Hill E K, Ortega L, Li Z K, Zhang J J, Sun J, Zhou L. J Nucl Mater, 2010; 396: 65
[12] Béchade J L, Dralet R, Goudeau P, Yvon P. Mater Sci Forum, 2000; 347: 471
[13] Jacquot T, Guillén R, Fran?ois M, Bourniquel B, Senevat J. Mater Sci Forum, 1996; 228-231: 845
[14] Petigny N, Barberis P, Lemaignan C, Valot Ch, Lallemant M. J Nucl Mater, 2000; 280: 318
[15] Polatidis E, Frankel P, Wei J, Klaus M, Comstock R J, Ambard A, Lyon S, Cottis R A, Preuss M. J Nucl Mater, 2013; 432: 102
[16] Qin W, Nam C, Li H L, Szpunar J A. Acta Mater, 2007; 437: 280
[17] Cox B. J Nucl Mater, 2005; 336: 331
[18] Guo X, Schober T. J Am Ceram Soc, 2004; 87: 746
[19] Fabris S, Paxton A T, Finnis M W. Acta Mater, 2002; 50: 5171
[20] Yilmazbayhan A, Motta A T, Comstock R J, Sabol G P, Lai B, Cai Z H. J Nucl Mater, 2004; 324: 6
[21] Motta A T, Yilmazbayhan A, GomesdaSilva M J, Comstock R J, Was G S, Busby J T, Gartner E, Peng Q J, Jeong Y H, Park J Y. J Nucl Mater, 2007; 371: 61
[22] Yilmazbayhan A, GomesdaSilva M J, Motta A T, Kim H G, Jeong Y H, Park J Y, Comstock R J, Lai B, Cai Z H. In: Allen T R, King P J, Nelson L eds., Proc 12th Int Conf on Environmental Degradation of Materials in Nuclear Power System-Water Reactors, Slat Late City: TMS, 2005: 201
[23] Du C X, Peng J C, Li H, Zhou B X. Acta Metall Sin, 2011; 47: 887 (杜晨曦, 彭剑超, 李 慧, 周邦新. 金属学报, 2011; 47: 887)
[24] Zhou B X, Li Q, Yao M Y, Liu W Q, Chu Y L. In: Kammenzind B, Limbck M eds., Zirconium in the Nuclear Industry: 15th International Symposium, ASTM STP 1505, Baltimore: ASTM International, 2009: 360
[25] Zhou B X, Li Q, Yao M Y, Liu W Q, Chu Y L. Corros Prot, 2009; 30: 589 (周邦新, 李 强, 姚美意, 刘文庆, 褚于良. 腐蚀与防护, 2009; 30: 589)
[26] Zhou B X, Li Q, Liu W Q, Yao M Y, Chu Y L. Rare Met Mater Eng, 2006; 35: 1009 (周邦新, 李 强, 刘文庆, 姚美意, 褚于良. 稀有金属材料与工程, 2006; 35: 1009)
[27] Zhou B X, Jiang Y R. Nucl Power Eng, 1990; 11: 233 (周邦新, 蒋有荣. 核动力工程, 1990; 11: 233)
[28] Geng J Q, Zhou B X, Yao M Y, Wang J H, Zhang X, Li S L, Du C X. J Shanghai Univ (Nat Sci Ed), 2011; 17: 293 (耿建桥, 周邦新, 姚美意, 王锦红, 张 欣, 李士炉, 杜晨曦. 上海大学学报(自然科学版), 2011; 17: 293)
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[4] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[5] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[6] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[7] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[8] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[9] 刘来娣, 丁彪, 任维丽, 钟云波, 王晖, 王秋良. DZ445镍基高温合金高温长时间氧化形成的多层膜结构[J]. 金属学报, 2023, 59(3): 387-398.
[10] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[11] 徐文国, 郝文江, 李应举, 赵庆彬, 卢炳聿, 郭和一, 刘天宇, 冯小辉, 杨院生. 微量AlTiInconel 690合金高温氧化行为的影响[J]. 金属学报, 2023, 59(12): 1547-1558.
[12] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[13] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[14] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[15] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.