Zr-1Nb alloy,Bi,corrosion resistance,microstructure,"/> 添加Bi对Zr-1Nb合金在360 ℃和18.6 MPa去离子水中耐腐蚀性能的影响
Please wait a minute...
金属学报  2013, Vol. 49 Issue (1): 51-57    DOI: 10.3724/SP.J.1037.2012.00378
  论文 本期目录 | 过刊浏览 |
添加Bi对Zr-1Nb合金在360 ℃和18.6 MPa去离子水中耐腐蚀性能的影响
朱莉1, 2,姚美意1, 2,孙国成1, 2,陈文觉1, 2,张金龙1, 2,周邦新1, 2
1. 上海大学微结构重点实验室, 上海 200444
2. 上海大学材料研究所, 上海 200072
EFFECT OF Bi ADDITION ON THE CORROSION RESISTANCE OF Zr-1Nb ALLOY IN DEIONIZED WATER AT 360 ℃ AND 18.6 MPa
ZHU Li1, 2, YAO Meiyi1, 2, SUN Guocheng1, 2,CHEN Wenjue 1, 2, ZHANG Jinlong1, 2,ZHOU Bangxin1, 2
1. Laboratory for Microstructures, Shanghai University, Shanghai 200444
2. Institute of Materials, Shanghai University, Shanghai 200072
引用本文:

朱莉,姚美意,孙国成,陈文觉,张金龙,周邦新. 添加Bi对Zr-1Nb合金在360 ℃和18.6 MPa去离子水中耐腐蚀性能的影响[J]. 金属学报, 2013, 49(1): 51-57.
ZHU Li, YAO Meiyi, SUN Guocheng, CHEN Wenjue, ZHANG Jinlong, ZHOU Bangxin. EFFECT OF Bi ADDITION ON THE CORROSION RESISTANCE OF Zr-1Nb ALLOY IN DEIONIZED WATER AT 360 ℃ AND 18.6 MPa[J]. Acta Metall Sin, 2013, 49(1): 51-57.

全文: PDF(1023 KB)  
摘要: 

利用高压釜腐蚀实验研究了Zr-1Nb-xBi(x=0.05-0.3, 质量分数, %)合金在360 ℃和18.6 MPa去离子水中的耐腐蚀性能. 结果表明, 在Zr--1Nb合金的基础上添加Bi能明显改善其耐腐蚀性能, 且随着Bi含量的增加, 合金的耐腐蚀性能进一步提高.合金显微组织的TEM观察和EDS分析表明, 合金中存在ZrNbFe型和β-Nb第二相,Bi含量对第二相的种类、尺寸和数量没有明显的影响; 0.3%的Bi可全部固溶在α-Zr基体中, 且不影响Nb的固溶含量. 氧化膜断口和内表面形貌的SEM观察表明,固溶在α-Zr基体中的Bi能够明显延缓氧化膜显微组织的演化, 包括孔隙发展成为微裂纹的过程和柱状晶向等轴晶的转变.

关键词 Zr-1Nb合金Bi耐腐蚀性能显微组织    
Abstract

The effect of Bi contents on the corrosion resistance of Zr-1Nb-xBi (x=0.05-0.3, mass fraction, %) was investigated in deionized water at 360 ℃ and 18.6 MPa by autoclave tests. The results show that the corrosion resistance of Zr-1Nb alloy can be improved by adding Bi,and the more the Bi content is, the better the corrosion resistance is.TEM and EDS analyses on the microstructures of the alloys show that there are two types of second phase particles (SPPs), including ZrNbFe and β-Nb. The Bi contents have little effect on the type, size and amount of SPPs, 0.3%Bi can be completely dissolved in α-Zr matrix and has no influence on the solution content of Nb inα-Zr matrix. From the fracture and inner surface morphology of oxide films observed by SEM, it can be seen that the Bi dissolved in theα-Zr could noticeably slow down the microstructural evolution of oxide film, including the propagation of micro--cracks and the transformation from columnar grains to equiaxed grains in the oxide film.

Key wordsZr-1Nb alloy')" href="#">
收稿日期: 2012-06-27     
基金资助:

国家自然科学基金项目50971084和国家先进压水堆重大专项项目2011ZX06004--023资助

 
作者简介: 朱莉, 女, 1988年生, 硕士生

 


[1] Motta A T, Yilmazbayhan A, Gomes da Silva M J, Comstock R J, Was G S, Busby J T, Gartner E, Peng Q J,Jeong Y H, Park J Y. J Nucl Mater, 2007; 371: 61

[2] Cox B. J Nucl Mater, 2005; 336: 331

[3] Billot P, Yagnik S, Ramasubramanian N, Peybernes J,Pecheur D. In: Moan G D, Rudling P eds., Zirconium in the Nuclear Industry: 13th International Symposium, ASTM STP 1423,Annecy: ASTM International, 2002: 169

[4] Mardon J P, Charquet D, Senevat J. In: Sabol G P, Moan G D eds., Zirconium in the Nuclear Industry: 12th International Symposium, ASTM STP 1354, Toronto: ASTM International, 2000: 505

[5] Park J Y, Yoo S J, Choi B K, Jeong Y H. J Nucl Mater,2008; 374: 343

[6] Hong H S, Moon J S, Kim S J, Lee K S. J Nucl Mater, 2001; 297: 113

[7] Yao M Y, Li S L, Zhang X, Peng J C, Zhou B X, Zhao X S, Shen J Y. Acta Metall Sin, 2011; 47: 865

 (姚美意, 李士炉, 张欣, 彭剑超, 周邦新, 赵旭山, 沈剑韵. 金属学报, 2011; 47: 865)

[8] Li S L, Yao M Y, Zhang X, Geng J Q, Peng J C, Zhou B X. Acta Metall Sin, 2011; 47: 163

 (李士炉, 姚美意, 张欣, 耿建桥, 彭剑超, 周邦新. 金属学报, 2011; 47: 163)

[9] Chen H M, Ma C L, Bai X D. The Corrosion and Protection of Nuclear Materials. Beijing: Atomic Energy Press, 1984: 1

 (陈鹤鸣, 马春来, 白新德编著. 核反应堆材料腐蚀及其防护.北京: 原子能出版社, 1984: 1)

[10] Li P Z, Li Z K, Xue X Y, Liu J Z. Rare Met Mater Eng,

1998; 27: 356

(李佩志, 李中奎, 薛祥义, 刘建章. 稀有金属材料与工程, 1998; 27: 356)

[11] Yao M Y, Zou L H, Xie X F, Zhang J L, Peng J C, Zhou B X.

 Acta Metall Sin, 2012; 48: 1098

 (姚美意, 邹玲红, 谢兴飞, 张金龙, 彭剑超, 周邦新. 金属学报, 2012; 48: 1098)

[12] Yao M Y, Zhou B X, Li Q, Liu W Q, Geng X, Lu Y P. J Nucl Mater,2008; 374: 197

[13] Kim Y S, Kim S K, Bang J G, Jung Y H. J Nucl Mater,2000; 279: 335

[14] Comstock R J, Schoenberger G, Sabol G P. In: Bradley E R,Sabol G P eds., Zirconium in the Nuclear Industry: 11th International Symposium, ASTM STP 1295, Garmisch--Partenkirchen: ASTM International, 1996: 710

[15] Park J Y, Choi B K, Yoo S J, Jeong Y H. J Nucl Mater,2006; 359: 59

[16] Anada H, Takeda K. In: Bradley E R, Sabol G P eds., Zirconium in

the Nuclear Industry: 11th International Symposium, ASTM STP 1295,

Garmisch--Partenkirchen: ASTM International, 1996: 35

[17] Wadman B, Lai Z, Andren H O, Nystrom A L, Rudling P, Pettersson H I.In: Garde A M, Bradley E R eds., Zirconium in the Nuclear Industry: 10th International Symposium, ASTM STP 1245, Baltimore M D: ASTM International, 1994: 579

[18] Zhou B X, Li Q, Yao M Y, Liu W Q. Nucl Power Eng, 2005; 26: 364

 (周邦新, 李强, 姚美意, 刘文庆. 核动力工程, 2005; 26: 364)

[19] Zhou B X, Li Q, Liu W Q, Yao M Y, Chu Y L. Rare Met Mater Eng,

2006; 35: 1009

 (周邦新, 李强, 刘文庆, 姚美意, 褚于良. 稀有金属材料工程, 2006; 35: 1009)

[20] Zhou B X, Li Q, Yao M Y, Liu W Q, Chu Y L. In: Kammenzind B,

Limback M eds., Zirconium in the Nuclear Industry: 15th International

Symposium, ASTM STP 1505, Sunriver Oregon: ASTM International, 2008: 371

[21] Zhou B X, Li Q, Huang Q, Miao Z, Zhao W J, Li C. Nucl Power Eng, 2000; 21: 339

 (周邦新, 李强, 黄强, 苗志, 赵文金, 李聪.核动力工程, 2000; 21: 339)

[22] Zhou B X, Li Q, Yao M Y, Liu W Q, Chu Y L. Corros Prot,

2009; 30: 589

 (周邦新, 李强, 姚美意, 刘文庆, 褚于良. 腐蚀与防护, 2009; 30: 589)

[23] Zhou B X, Peng J C, Yao M Y, Li Q, Xia S, Du C X, Xu G. In: Limback M,Barberis P eds., Zirconium in the Nuclear Industry: 16th International Symposium, ASTM STP 1529, Chengdu: ASTM International, 2010: 620

[24] Zhong X Y, Yang B, Li M C, Yao M Y, Zhou B X, Shen J N. Rare Met

Mater Eng, 2010; 39: 2167

 (钟祥玉, 杨波, 李谋成, 姚美意, 周邦新. 沈嘉年. 稀有金属材料工程,

2010; 39: 2167)

[25] Weidinger H G, Ruhmann H, Cheliotis G, Maguire M, Yau T L.In: Eucken C M, Garde A M eds., Zirconium in the Nuclear Industry:9th International Symposium, ASTM STP 1132, Kobe: ASTM International,1991: 499
[1] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[2] 任师浩, 刘永利, 孟凡顺, 祁阳. 应变工程中Bi(111)薄膜的半导体-半金属转变及其机理[J]. 金属学报, 2022, 58(7): 911-920.
[3] 陈胜虎, 戎利建. 超细晶铁素体-马氏体钢的高温氧化成膜特性及其对Pb-Bi腐蚀行为的影响[J]. 金属学报, 2021, 57(8): 989-999.
[4] 程伟丽, 谷雄杰, 成世明, 陈宇航, 余晖, 王利飞, 王红霞, 李航. 镁空气电池阳极用挤压态Mg-2Bi-0.5Ca-0.5In合金的放电性能和电化学行为[J]. 金属学报, 2021, 57(5): 623-631.
[5] 朱雯婷, 崔君军, 陈振业, 冯阳, 赵阳, 陈礼清. 690 MPa级高强韧低碳微合金建筑结构钢设计及性能[J]. 金属学报, 2021, 57(3): 340-352.
[6] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[7] 包飞洋, 李艳芬, 王光全, 张家榕, 严伟, 石全强, 单以银, 杨柯, 许斌, 宋丹戎, 严明宇, 魏学栋. ODS钢在600700 ℃静态Pb-Bi共晶中的腐蚀行为及机理[J]. 金属学报, 2020, 56(10): 1366-1376.
[8] 黎旺,孙倩,江鸿翔,赵九洲. Al-Bi合金凝固过程及微合金化元素Sn的影响[J]. 金属学报, 2019, 55(7): 831-839.
[9] 何东昱,刘玉欣. 0.8PbTiO3-0.2Bi(Mg0.5Ti0.5)O3铁电薄膜90°分步畴转与温度效应[J]. 金属学报, 2019, 55(3): 325-331.
[10] 张林,满田囡,王恩刚. 弥散固态颗粒对Al-Bi合金液-液相分离过程的影响[J]. 金属学报, 2019, 55(3): 399-409.
[11] 董彩虹, 刘永利, 祁阳. 厚度对Bi薄膜表面特性和电学性质的影响[J]. 金属学报, 2018, 54(6): 935-942.
[12] 王垚,李春福,林元华. Cr对Fe-Cr合金耐蚀性能影响的电子理论研究[J]. 金属学报, 2017, 53(5): 622-630.
[13] 杨旭, 廖波, 刘坚, 严伟, 单以银, 肖福仁, 杨柯. 中国低活化马氏体钢在液态Pb-Bi中的脆化现象[J]. 金属学报, 2017, 53(5): 513-523.
[14] 徐伟,路新,杜艳霞,孟庆宇,黎鸣,曲选辉. 粉末冶金制备Ti-Fe二元合金的耐腐蚀性能[J]. 金属学报, 2017, 53(1): 38-46.
[15] 鲁艳红, 宋元元, 陈胜虎, 戎利建. Al和Si对9Cr2WVTa钢力学性能及耐Pb-Bi腐蚀性能的影响*[J]. 金属学报, 2016, 52(3): 298-306.