|
|
激光熔化沉积制备316L不锈钢的电化学腐蚀及空化腐蚀性能 |
蒋华臻1, 彭爽2, 胡琦芸1,3, 王光义2, 陈启生1,3( ), 李正阳1,3( ), 孙辉磊1,4, 房佳汇钰1,3 |
1 中国科学院力学研究所 宽域飞行工程科学与应用中心 北京 100190 2 南京航空航天大学 材料科学与技术学院 南京 210016 3 中国科学院大学 工程科学学院 北京 100049 4 河北科技大学 机械工程学院 石家庄 050018 |
|
Corrosion and Cavitation Erosion Resistance of 316L Stainless Steels Produced by Laser Metal Deposition |
JIANG Huazhen1, PENG Shuang2, HU Qiyun1,3, WANG Guangyi2, CHEN Qisheng1,3( ), LI Zhengyang1,3( ), SUN Huilei1,4, FANG Jiahuiyu1,3 |
1 Wide Field Flight Engineering Science and Application Center, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China 2 Collage of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China 3 School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China 4 School of Mechanical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China |
引用本文:
蒋华臻, 彭爽, 胡琦芸, 王光义, 陈启生, 李正阳, 孙辉磊, 房佳汇钰. 激光熔化沉积制备316L不锈钢的电化学腐蚀及空化腐蚀性能[J]. 金属学报, 2024, 60(11): 1512-1530.
Huazhen JIANG,
Shuang PENG,
Qiyun HU,
Guangyi WANG,
Qisheng CHEN,
Zhengyang LI,
Huilei SUN,
Jiahuiyu FANG.
Corrosion and Cavitation Erosion Resistance of 316L Stainless Steels Produced by Laser Metal Deposition[J]. Acta Metall Sin, 2024, 60(11): 1512-1530.
1 |
Park I C,Kim S J. Cavitation erosion behavior in seawater of electroless Ni-P coating and process optimization using Taguchi method [J]. Appl. Surf. Sci., 2019, 477: 37
|
2 |
Xu J, Peng S, Li Z Y, et al. The influence of semiconducting properties of passive films on the cavitation erosion resistance of a NbN nanoceramic coating [J]. Ultrason. Sonochem., 2021, 71: 105406
|
3 |
Hardes C, Pöhl F, Röttger A, et al. Cavitation erosion resistance of 316L austenitic steel processed by selective laser melting (SLM) [J]. Addit. Manuf., 2019, 29: 100786
|
4 |
Li Z, Voisin T, McKeown J T, et al. Tensile properties, strain rate sensitivity, and activation volume of additively manufactured 316L stainless steels [J]. Int. J. Plast., 2019, 120: 395
|
5 |
Zhong Y, Liu L F, Wikman S, et al. Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting [J]. J. Nucl. Mater., 2016, 470: 170
|
6 |
Kong D C, Ni X Q, Dong C F, et al. Heat treatment effect on the microstructure and corrosion behavior of 316L stainless steel fabricated by selective laser melting for proton exchange membrane fuel cells [J]. Electrochim. Acta, 2018, 276: 293
|
7 |
Jiang H Z, Fang J H Y, Chen Q S, et al. State of the art of selective laser melted 316L stainless steel: Process, microstructure, and mechanical properties [J]. Chin. J. Lasers, 2022, 49: 1402804
|
7 |
蒋华臻, 房佳汇钰, 陈启生 等. 激光选区熔化成形316L不锈钢工艺、微观组织、力学性能的研究现状 [J]. 中国激光, 2022, 49: 1402804
|
8 |
Ma M M, Wang Z M, Zeng X Y. A comparison on metallurgical behaviors of 316L stainless steel by selective laser melting and laser cladding deposition [J]. Mater. Sci. Eng., 2017, A685: 265
|
9 |
Jiang H Z, Li Z Y, Feng T, et al. Effect of process parameters on defects, melt pool shape, microstructure, and tensile behavior of 316L stainless steel produced by selective laser melting [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 495
|
10 |
Wang Y M, Voisin T, McKeown J T, et al. Additively manufactured hierarchical stainless steels with high strength and ductility [J]. Nat. Mater., 2018, 17: 63
doi: 10.1038/nmat5021
pmid: 29115290
|
11 |
Saboori A, Aversa A, Marchese G, et al. Microstructure and mechanical properties of AISI 316L produced by directed energy deposition-based additive manufacturing: A review [J]. Appl. Sci., 2020, 10: 3310
|
12 |
Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals [J]. Acta Mater., 2016, 117: 371
|
13 |
Liu L F, Ding Q Q, Zhong Y, et al. Dislocation network in additive manufactured steel breaks strength-ductility trade-off [J]. Mater. Today, 2018, 21: 354
|
14 |
Shamsujjoha M, Agnew S R, Fitz-Gerald J M, et al. High strength and ductility of additively manufactured 316L stainless steel explained [J]. Metall. Mater. Trans., 2018, 49A: 3011
|
15 |
Kong D C, Dong C F, Ni X Q, et al. Mechanical properties and corrosion behavior of selective laser melted 316L stainless steel after different heat treatment processes [J]. J. Mater. Sci. Technol., 2019, 35: 1499
doi: 10.1016/j.jmst.2019.03.003
|
16 |
Ziętala M, Durejko T, Polański M, et al. The microstructure, mechanical properties and corrosion resistance of 316L stainless steel fabricated using laser engineered net shaping [J]. Mater. Sci. Eng., 2016, A677: 1
|
17 |
Yan Z, Zou K, Cheng M P, et al. Revealing relationships between heterogeneous microstructure and strengthening mechanism of austenitic stainless steels fabricated by directed energy deposition (DED) [J]. J. Mater. Res. Technol., 2021, 15: 582
|
18 |
Guo P, Zou B, Huang C Z, et al. Study on microstructure, mechanical properties and machinability of efficiently additive manufactured AISI 316L stainless steel by high-power direct laser deposition [J]. J. Mater. Sci. Technol., 2017, 240: 12
|
19 |
Yang N, Yee J, Zheng B, et al. Process-structure-property relationships for 316L stainless steel fabricated by additive manufacturing and its implication for component engineering [J]. J. Therm. Spray Technol., 2017, 26: 610
|
20 |
Aversa A, Marchese G, Bassini E. Directed energy deposition of AISI 316L stainless steel powder: Effect of process parameters [J]. Metals, 2021, 11: 932
|
21 |
Ding H Q, Tang Q, Zhu Y, et al. Cavitation erosion resistance of 316L stainless steel fabricated using selective laser melting [J]. Friction, 2021, 9: 1580
|
22 |
Zhu Y, Yang Y, Lu P, et al. Influence of surface pores on selective laser melted parts under lubricated contacts: A case study of a hydraulic spool valve [J]. Virtual Phys. Prototy., 2019, 14: 395
doi: 10.1080/17452759.2019.1633930
|
23 |
Sprouster D J, Cunningham W S, Halada G P, et al. Dislocation microstructure and its influence on corrosion behavior in laser additively manufactured 316L stainless steel [J]. Addit. Manuf., 2021, 47: 102263
|
24 |
Kazemipour M, Mohammadi M, Mfoumou E, et al. Microstructure and corrosion characteristics of selective laser-melted 316L stainless steel: The impact of process-induced porosities [J]. JOM, 2019, 71: 3230
doi: 10.1007/s11837-019-03647-w
|
25 |
Nie J J, Wei L, Jiang Y, et al. Corrosion mechanism of additively manufactured 316 L stainless steel in 3.5 wt.% NaCl solution [J]. Mater. Today Commun., 2021, 26: 101648
|
26 |
Hou J Y, Li Z Y, Jiang H Z, et al. Process and properties of Ti6Al4V manufactured using laser melting deposition with dimensionless processing diagram [J]. Chin. J. Lasers, 2022, 49: 0202013
|
26 |
候静宇, 李正阳, 蒋华臻 等. 基于无量纲工艺图的激光熔化沉积制备Ti6Al4V工艺与性能研究 [J]. 中国激光, 2022, 49: 0202013
|
27 |
Jiang H Z, Li Z Y, Feng T, et al. Factor analysis of selective laser melting process parameters with normalised quantities and Taguchi method [J]. Opt. Laser Technol., 2019, 119: 105592
|
28 |
Jiang H Z, Li Z Y, Feng T, et al. Effect of annealing temperature and strain rate on mechanical property of a selective laser melted 316L stainless steel [J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 773
|
29 |
Lu K, Lu L, Suresh S. Strengthening materials by engineering coherent internal boundaries at the nanoscale [J]. Science, 2009, 324: 349
doi: 10.1126/science.1159610
pmid: 19372422
|
30 |
Khodabakhshi F, Farshidianfar M H, Gerlich A P, et al. Microstructure, strain-rate sensitivity, work hardening, and fracture behavior of laser additive manufactured austenitic and martensitic stainless steel structures [J]. Mater. Sci. Eng., 2019, A756: 545
|
31 |
Sun Z J, Tan X P, Tor S B, et al. Simultaneously enhanced strength and ductility for 3D-printed stainless steel 316L by selective laser melting [J]. NPG Asia Mater., 2018, 10: 127
|
32 |
Ion J C, Shercliff H R, Ashby M F. Diagrams for laser materials processing [J]. Acta Metall. Mater., 1992, 40: 1539
|
33 |
Kamath C, El-dasher B, Gallegos G F, et al. Density of additively-manufactured, 316L SS parts using laser powder-bed fusion at powers up to 400 W [J]. Int. J. Adv. Manuf. Technol., 2014, 74: 65
|
34 |
Yu W H, Sing S L, Chua C K, et al. Influence of re-melting on surface roughness and porosity of AlSi10Mg parts fabricated by selective laser melting [J]. J. Alloys Compd., 2019, 792: 574
|
35 |
Kim T H, Baek G Y, Jeon J B, et al. Effect of laser rescanning on microstructure and mechanical properties of direct energy deposited AISI 316L stainless steel [J]. Surf. Coat. Technol., 2021, 405: 126540
|
36 |
Saboori A, Piscopo G, Lai M, et al. An investigation on the effect of deposition pattern on the microstructure, mechanical properties and residual stress of 316L produced by directed energy deposition [J]. Mater. Sci. Eng., 2020, A780: 139179
|
37 |
Ronneberg T, Davies C M, Hooper P A. Revealing relationships between porosity, microstructure and mechanical properties of laser powder bed fusion 316L stainless steel through heat treatment [J]. Mater. Des., 2020, 189: 108481
|
38 |
Casati R, Lemke J, Vedani M. Microstructure and fracture behavior of 316L austenitic stainless steel produced by selective laser melting [J]. J. Mater. Sci. Technol., 2016, 32: 738
|
39 |
Yu C F, Zhong Y, Zhang P, et al. Effect of build direction on fatigue performance of L-PBF 316L stainless steel [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 539
|
40 |
Güden M, Yavaş H, Tanrıkulu A A, et al. Orientation dependent tensile properties of a selective-laser-melt 316L stainless steel [J]. Mater. Sci. Eng., 2021, A824: 141808
|
41 |
Shiau C H, McMurtrey M D, O'Brien R C, et al. Deformation behavior and irradiation tolerance of 316 L stainless steel fabricated by direct energy deposition [J]. Mater. Des., 2021, 204: 109644
|
42 |
Zhang K, Wang S J, Liu W J, et al. Characterization of stainless steel parts by laser metal deposition shaping [J]. Mater. Des., 2014, 55: 104
|
43 |
Katayama S, Matsunawa A. Solidification microstructure of laser welded stainless steels [J]. ICALEO, 1984, 1984: 60
|
44 |
Ren J, Mahajan C, Liu L, et al. Corrosion behavior of selectively laser melted CoCrFeMnNi high entropy alloy [J]. Metals, 2019, 9: 1029
|
45 |
Salman O O, Gammer C, Chaubey A K, et al. Effect of heat treatment on microstructure and mechanical properties of 316L steel synthesized by selective laser melting [J]. Mater. Sci. Eng., 2019, A748: 205
|
46 |
Montero-Sistiaga M L, Godino-Martinez M, Boschmans K, et al. Microstructure evolution of 316L produced by HP-SLM (high power selective laser melting) [J]. Addit. Manuf., 2018, 23: 402
|
47 |
Wang D, Song C H, Yang Y Q, et al. Investigation of crystal growth mechanism during selective laser melting and mechanical property characterization of 316L stainless steel parts [J]. Mater. Des., 2016, 100: 291
|
48 |
Krakhmalev P, Fredriksson G, Svensson K, et al. Microstructure, solidification texture, and thermal stability of 316 L stainless steel manufactured by laser powder bed fusion [J]. Metals, 2018, 8: 643
|
49 |
Li Z, He B, Guo Q. Strengthening and hardening mechanisms of additively manufactured stainless steels: The role of cell sizes [J]. Scr. Mater., 2020, 177: 17
|
50 |
Wang P, Goh M H, Li Q, et al. Effect of defects and specimen size with rectangular cross-section on the tensile properties of additively manufactured components [J]. Virtual Phys. Prototy., 2020, 15: 251
doi: 10.1080/17452759.2020.1733430
|
51 |
Zheng Z B, Long J, Wang S, et al. Cavitation erosion-corrosion behaviour of Fe-10Cr martensitic steel microalloyed with Zr in 3.5% NaCl solution [J]. Corros. Sci., 2021, 184: 109382
|
52 |
Cherry J A, Davies H M, Mehmood S, et al. Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting [J]. Int. J. Adv. Manuf. Technol., 2015, 76: 869
|
53 |
Stout K J, Blunt L. Three Dimensional Surface Topography [M]. 2nd Ed., London: Kogan Page Ltd., 2000: 157
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|