Please wait a minute...
金属学报  2024, Vol. 60 Issue (11): 1512-1530    DOI: 10.11900/0412.1961.2022.00382
  研究论文 本期目录 | 过刊浏览 |
激光熔化沉积制备316L不锈钢的电化学腐蚀及空化腐蚀性能
蒋华臻1, 彭爽2, 胡琦芸1,3, 王光义2, 陈启生1,3(), 李正阳1,3(), 孙辉磊1,4, 房佳汇钰1,3
1 中国科学院力学研究所 宽域飞行工程科学与应用中心 北京 100190
2 南京航空航天大学 材料科学与技术学院 南京 210016
3 中国科学院大学 工程科学学院 北京 100049
4 河北科技大学 机械工程学院 石家庄 050018
Corrosion and Cavitation Erosion Resistance of 316L Stainless Steels Produced by Laser Metal Deposition
JIANG Huazhen1, PENG Shuang2, HU Qiyun1,3, WANG Guangyi2, CHEN Qisheng1,3(), LI Zhengyang1,3(), SUN Huilei1,4, FANG Jiahuiyu1,3
1 Wide Field Flight Engineering Science and Application Center, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
2 Collage of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
3 School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
4 School of Mechanical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
引用本文:

蒋华臻, 彭爽, 胡琦芸, 王光义, 陈启生, 李正阳, 孙辉磊, 房佳汇钰. 激光熔化沉积制备316L不锈钢的电化学腐蚀及空化腐蚀性能[J]. 金属学报, 2024, 60(11): 1512-1530.
Huazhen JIANG, Shuang PENG, Qiyun HU, Guangyi WANG, Qisheng CHEN, Zhengyang LI, Huilei SUN, Jiahuiyu FANG. Corrosion and Cavitation Erosion Resistance of 316L Stainless Steels Produced by Laser Metal Deposition[J]. Acta Metall Sin, 2024, 60(11): 1512-1530.

全文: PDF(8169 KB)   HTML
摘要: 

腐蚀和空化腐蚀性能是评估流体机械元件性能和可靠性的重要指标,而激光熔化沉积(LMD)作为材料表面改性和复杂构件制造的重要技术手段,是提升材料力学性能的有效途径。本工作利用激光熔化沉积制备了316L不锈钢样件,系统研究了激光功率、扫描策略、重熔及打印方向对成形件电化学腐蚀及空化腐蚀性能的影响,并与锻造316L不锈钢的腐蚀与空化腐蚀特性进行了比较。用开路电位测量法和动电位极化法测试了各沉积态试样在3.5%NaCl溶液中的耐腐蚀性能,并分析了不同工艺参数下LMD-316L不锈钢样品的空化腐蚀性能。与锻造316L不锈钢的均匀等轴晶显微结构相比,LMD-316L不锈钢具有与工艺参数相关的非平衡微观结构,即:大/小角度晶界、晶粒、胞/枝晶亚结构、与工艺相关的缺陷等,LMD-316L不锈钢的晶粒尺寸远大于锻造316L不锈钢,提高激光功率、打印方向从水平方向变为垂直打印时,材料的晶粒尺寸和枝晶臂间距均呈增大趋势,然而,表面重熔和90°旋转扫描策略处理后,材料的晶粒尺寸和枝晶臂间距变化趋势明显不同,显微硬度测试结果表明,相比晶粒尺寸,枝晶臂间距能够更好地解释显微硬度的变化规律。这种显著的微观结构差异也导致了LMD-316L不锈钢的电化学及空化腐蚀性能明显不同于锻造316L不锈钢。电化学腐蚀测试结果表明LMD-316L不锈钢的耐腐蚀性能远优于锻造316L不锈钢,不同工艺参数下LMD-316L不锈钢样件的极化电阻(Rp)相比锻造316L不锈钢提高了2~98倍,而腐蚀电流密度(icorr)降低了1~2个数量级;超声振动空化系统测试结果表明LMD-316L不锈钢的抗空蚀能力优于锻造316L不锈钢,但LMD-316L不锈钢内孔洞、晶界等作为应力集中源会优先发生空化损伤,并在随后的空化腐蚀进程中呈现“突出状”并逐渐消失形成大量韧窝。材料的抗空化腐蚀能力主要取决于其局部力学性能,LMD-316L不锈钢的硬度显著高于锻造316L不锈钢,因此其抗空蚀能力显著提高,然而由于LMD-316L不锈钢内部存在不均匀的微观组织和与工艺相关的孔洞缺陷,导致LMD-316L不锈钢的显微硬度云图呈现空间不均匀分布的特点,因而LMD-316L不锈钢空化后的表面形貌在某些局部区域存在较为严重的空化损伤。

关键词 增材制造激光熔化沉积316L不锈钢腐蚀空化腐蚀显微硬度    
Abstract

Corrosion and cavitation erosion are important indicators for evaluating the performance and reliability of hydraulic machinery. Laser metal deposition (LMD), as an important technique for both surface modification and complex component fabrication, is proven to be effective in enhancing the mechanical properties of materials. In this study, 316L stainless steel (316L SS) samples were fabricated using LMD and the effects of laser power, scanning strategy, surface remelting, and build direction on the electrochemical corrosion and cavitation erosion resistance of the LMD-produced samples were systematically studied. The obtained results were compared with those of a wrought counterpart. The corrosion resistance of the LMD-produced samples in a 3.5%NaCl solution was tested via open-circuit potential measurement and potentiodynamic polarization tests. Also, the cavitation erosion resistance of the LMD-produced samples was studied according to different process parameters. The microstructure of the forged 316L SS sample was characterized with uniformly distributed equiaxed grains, whereas the LMD-produced samples exhibited a process-dependent nonequilibrium microstructure consisting of high-/low-angle grain boundaries, tortuous grains, cellular/dendritic substructures, and processing-related defects. The grain size of the LMD-produced 316L SS sample was much larger than that of the forged 316L SS. By increasing the laser power or changing the sample from horizontally built to vertically built, both the grain size and dendritic arm spacing of the material tended to increase. However, when surface remelting and the 90°-rotation scanning strategy were adopted, the changes in the grain size and dendritic arm spacing of the material were obviously different. Results of a microhardness test showed that the dendritic arm spacing can better match the microhardness evolution than the grain size. This microstructural difference also led to a significantly different electrochemical corrosion and cavitation erosion performance from that of the forged 316L SS. Results of an electrochemical corrosion test showed that the corrosion resistance of the LMD-produced 316L SS sample was much better than that of the forged 316L SS, i.e., the polarization resistance (Rp) of the LMD-produced 316L SS sample under different processing increased by about 2-98 times, while the corrosion current density (icorr) decreased by one to two orders of magnitude. The test results of an ultrasonic vibration cavitation system showed that the cavitation erosion resistance of the LMD-produced 316L SS sample was better than that of the forged 316L SS. However, stress concentration may be induced in local areas such as pores and grain boundaries, which, in turn, facilitate preferentially cavitation damage in these areas. Also, protrusion topography appeared, and gradually disappeared to form a large number of dimples in the subsequent cavitation erosion process. The cavitation erosion resistance of the material mainly depended on its local mechanical properties. The microhardness test results showed that the hardness of the LMD-produced 316L SS sample was significantly higher than that of the forged sample, so its cavitation erosion resistance was significantly improved. However, because of the heterogeneous microstructure and process-related pore defects formed in the LMD-produced samples, the microhardness contour exhibited a spatially nonuniform distribution characteristic; hence, the surface morphology of the LMD-produced 316L SS sample was seriously eroded in some local areas after cavitation.

Key wordsadditive manufacturing    laser metal deposition    316L stainless steel    corrosion    cavitation erosion    microhardness
收稿日期: 2022-08-15     
ZTFLH:  TH16  
基金资助:国家自然科学基金项目(11772344)
通讯作者: 陈启生,qschen@imech.ac.cn,主要从事激光增材制造、计算传热学、晶体生长及过程模型化等研究;
李正阳,zyli@imech.ac.cn,主要从事金属材料的润滑与摩擦、磨损与疲劳、激光增材制造等研究
Corresponding author: CHEN Qisheng, professor, Tel: (010)82544092, E-mail: qschen@imech.ac.cn;
LI Zhengyang, associate professor, Tel: (010)82544258, E-mail: zyli@imech.ac.cn
作者简介: 蒋华臻,男,1992年生,博士
图1  实验细节信息
Sample No.Laser power / WScanning speed mm·s-1Scanning strategyBuild orientation (z axis) / mm
112006.0105° rotation5
214006.0105° rotation5
316006.0105° rotation5
412006.0Surface remelting for every two layers5
512006.090° rotation5
612006.0105° rotation10
表1  实验所用的工艺参数及其对应的样品编号
图2  超声空化腐蚀设备原理图
图3  锻造316L不锈钢的微观组织特征
图4  不同工艺参数下的激光熔化沉积316L (LMD-316L)不锈钢成形件致密度及相应的典型缺陷形貌图
图5  不同工艺参数下LMD-316L不锈钢显微组织的SEM像
图6  不同工艺参数下LMD-316L不锈钢的EBSD像
图7  不同工艺参数下LMD-316L不锈钢的晶粒尺寸分布图
图8  不同工艺参数下LMD-316L不锈钢的晶粒取向差分布
图9  不同工艺参数下LMD-316L不锈钢的显微硬度分布云图
Sample No.Minimum hardnessMaximum hardnessAverage hardness
1313.1390.2355.4 ± 15.7
2305.6372.4335.1 ± 13.2
3298.7354.8325.5 ± 10.5
4308.7373.2340.1 ± 13.6
5304.3368.7340.4 ± 11.9
6279.9333.6309.9 ± 10.7
表2  不同工艺参数下LMD-316L不锈钢试样的显微硬度 (HV1)
图10  不同工艺参数制备的LMD-316L和锻造316L不锈钢在3.5%NaCl溶液中的开路电位随时间的变化规律
图11  扫描速率为0.001 V/s时不同工艺参数制备的LMD-316L和锻造316L不锈钢的动电位极化曲线
Sample No.Rp / (Ω·cm-2)babcicorr / (A·cm-2)
13100745.5334.56153.521.475 × 10-8
287315.41335.11126.575.757 × 10-7
3119891.4415.8181.554.583 × 10-7
475209.72475.24134.937.398 × 10-7
562532.5593.4790.935.483 × 10-7
666780.6976.56135.337.739 × 10-7
Wrought 316L31502.423809.52167.422.294 × 10-6
表3  LMD-316L和锻造316L不锈钢在3.5%NaCl溶液中的电化学参数
图12  经0.5和4 h空化腐蚀测试后锻造316L不锈钢的表面形貌
图13  经0.5和4 h空化腐蚀测试后No.1试样的表面形貌
图14  经0.5和4 h空化腐蚀测试后No.2试样的表面形貌
图15  经0.5和4 h空化腐蚀测试后No.3试样的表面形貌
图16  经0.5和4 h空化腐蚀测试后No.4试样的表面形貌
图17  经0.5和4 h空化腐蚀测试后No.5试样的表面形貌
图18  经0.5和4 h空化腐蚀测试后No.6试样的表面形貌
图19  利用3个典型表面形貌参数表征不同工艺参数下LMD-316L和锻造316L不锈钢的形貌特征
1 Park I C,Kim S J. Cavitation erosion behavior in seawater of electroless Ni-P coating and process optimization using Taguchi method [J]. Appl. Surf. Sci., 2019, 477: 37
2 Xu J, Peng S, Li Z Y, et al. The influence of semiconducting properties of passive films on the cavitation erosion resistance of a NbN nanoceramic coating [J]. Ultrason. Sonochem., 2021, 71: 105406
3 Hardes C, Pöhl F, Röttger A, et al. Cavitation erosion resistance of 316L austenitic steel processed by selective laser melting (SLM) [J]. Addit. Manuf., 2019, 29: 100786
4 Li Z, Voisin T, McKeown J T, et al. Tensile properties, strain rate sensitivity, and activation volume of additively manufactured 316L stainless steels [J]. Int. J. Plast., 2019, 120: 395
5 Zhong Y, Liu L F, Wikman S, et al. Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting [J]. J. Nucl. Mater., 2016, 470: 170
6 Kong D C, Ni X Q, Dong C F, et al. Heat treatment effect on the microstructure and corrosion behavior of 316L stainless steel fabricated by selective laser melting for proton exchange membrane fuel cells [J]. Electrochim. Acta, 2018, 276: 293
7 Jiang H Z, Fang J H Y, Chen Q S, et al. State of the art of selective laser melted 316L stainless steel: Process, microstructure, and mechanical properties [J]. Chin. J. Lasers, 2022, 49: 1402804
7 蒋华臻, 房佳汇钰, 陈启生 等. 激光选区熔化成形316L不锈钢工艺、微观组织、力学性能的研究现状 [J]. 中国激光, 2022, 49: 1402804
8 Ma M M, Wang Z M, Zeng X Y. A comparison on metallurgical behaviors of 316L stainless steel by selective laser melting and laser cladding deposition [J]. Mater. Sci. Eng., 2017, A685: 265
9 Jiang H Z, Li Z Y, Feng T, et al. Effect of process parameters on defects, melt pool shape, microstructure, and tensile behavior of 316L stainless steel produced by selective laser melting [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: ‏ 495
10 Wang Y M, Voisin T, McKeown J T, et al. Additively manufactured hierarchical stainless steels with high strength and ductility [J]. Nat. Mater., 2018, 17: 63
doi: 10.1038/nmat5021 pmid: 29115290
11 Saboori A, Aversa A, Marchese G, et al. Microstructure and mechanical properties of AISI 316L produced by directed energy deposition-based additive manufacturing: A review [J]. Appl. Sci., 2020, 10: 3310
12 Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals [J]. Acta Mater., 2016, 117: 371
13 Liu L F, Ding Q Q, Zhong Y, et al. Dislocation network in additive manufactured steel breaks strength-ductility trade-off [J]. Mater. Today, 2018, 21: 354
14 Shamsujjoha M, Agnew S R, Fitz-Gerald J M, et al. High strength and ductility of additively manufactured 316L stainless steel explained [J]. Metall. Mater. Trans., 2018, 49A: 3011
15 Kong D C, Dong C F, Ni X Q, et al. Mechanical properties and corrosion behavior of selective laser melted 316L stainless steel after different heat treatment processes [J]. J. Mater. Sci. Technol., 2019, 35: 1499
doi: 10.1016/j.jmst.2019.03.003
16 Ziętala M, Durejko T, Polański M, et al. The microstructure, mechanical properties and corrosion resistance of 316L stainless steel fabricated using laser engineered net shaping [J]. Mater. Sci. Eng., 2016, A677: 1
17 Yan Z, Zou K, Cheng M P, et al. Revealing relationships between heterogeneous microstructure and strengthening mechanism of austenitic stainless steels fabricated by directed energy deposition (DED) [J]. J. Mater. Res. Technol., 2021, 15: 582
18 Guo P, Zou B, Huang C Z, et al. Study on microstructure, mechanical properties and machinability of efficiently additive manufactured AISI 316L stainless steel by high-power direct laser deposition [J]. J. Mater. Sci. Technol., 2017, 240: 12
19 Yang N, Yee J, Zheng B, et al. Process-structure-property relationships for 316L stainless steel fabricated by additive manufacturing and its implication for component engineering [J]. J. Therm. Spray Technol., 2017, 26: 610
20 Aversa A, Marchese G, Bassini E. Directed energy deposition of AISI 316L stainless steel powder: Effect of process parameters [J]. Metals, 2021, 11: 932
21 Ding H Q, Tang Q, Zhu Y, et al. Cavitation erosion resistance of 316L stainless steel fabricated using selective laser melting [J]. Friction, 2021, 9: 1580
22 Zhu Y, Yang Y, Lu P, et al. Influence of surface pores on selective laser melted parts under lubricated contacts: A case study of a hydraulic spool valve [J]. Virtual Phys. Prototy., 2019, 14: 395
doi: 10.1080/17452759.2019.1633930
23 Sprouster D J, Cunningham W S, Halada G P, et al. Dislocation microstructure and its influence on corrosion behavior in laser additively manufactured 316L stainless steel [J]. Addit. Manuf., 2021, 47: 102263
24 Kazemipour M, Mohammadi M, Mfoumou E, et al. Microstructure and corrosion characteristics of selective laser-melted 316L stainless steel: The impact of process-induced porosities [J]. JOM, 2019, 71: 3230
doi: 10.1007/s11837-019-03647-w
25 Nie J J, Wei L, Jiang Y, et al. Corrosion mechanism of additively manufactured 316 L stainless steel in 3.5 wt.% NaCl solution [J]. Mater. Today Commun., 2021, 26: 101648
26 Hou J Y, Li Z Y, Jiang H Z, et al. Process and properties of Ti6Al4V manufactured using laser melting deposition with dimensionless processing diagram [J]. Chin. J. Lasers, 2022, 49: 0202013
26 候静宇, 李正阳, 蒋华臻 等. 基于无量纲工艺图的激光熔化沉积制备Ti6Al4V工艺与性能研究 [J]. 中国激光, 2022, 49: 0202013
27 Jiang H Z, Li Z Y, Feng T, et al. Factor analysis of selective laser melting process parameters with normalised quantities and Taguchi method [J]. Opt. Laser Technol., 2019, 119: 105592
28 Jiang H Z, Li Z Y, Feng T, et al. Effect of annealing temperature and strain rate on mechanical property of a selective laser melted 316L stainless steel [J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 773
29 Lu K, Lu L, Suresh S. Strengthening materials by engineering coherent internal boundaries at the nanoscale [J]. Science, 2009, 324: 349
doi: 10.1126/science.1159610 pmid: 19372422
30 Khodabakhshi F, Farshidianfar M H, Gerlich A P, et al. Microstructure, strain-rate sensitivity, work hardening, and fracture behavior of laser additive manufactured austenitic and martensitic stainless steel structures [J]. Mater. Sci. Eng., 2019, A756: 545
31 Sun Z J, Tan X P, Tor S B, et al. Simultaneously enhanced strength and ductility for 3D-printed stainless steel 316L by selective laser melting [J]. NPG Asia Mater., 2018, 10: 127
32 Ion J C, Shercliff H R, Ashby M F. Diagrams for laser materials processing [J]. Acta Metall. Mater., 1992, 40: 1539
33 Kamath C, El-dasher B, Gallegos G F, et al. Density of additively-manufactured, 316L SS parts using laser powder-bed fusion at powers up to 400 W [J]. Int. J. Adv. Manuf. Technol., 2014, 74: 65
34 Yu W H, Sing S L, Chua C K, et al. Influence of re-melting on surface roughness and porosity of AlSi10Mg parts fabricated by selective laser melting [J]. J. Alloys Compd., 2019, 792: 574
35 Kim T H, Baek G Y, Jeon J B, et al. Effect of laser rescanning on microstructure and mechanical properties of direct energy deposited AISI 316L stainless steel [J]. Surf. Coat. Technol., 2021, 405: 126540
36 Saboori A, Piscopo G, Lai M, et al. An investigation on the effect of deposition pattern on the microstructure, mechanical properties and residual stress of 316L produced by directed energy deposition [J]. Mater. Sci. Eng., 2020, A780: 139179
37 Ronneberg T, Davies C M, Hooper P A. Revealing relationships between porosity, microstructure and mechanical properties of laser powder bed fusion 316L stainless steel through heat treatment [J]. Mater. Des., 2020, 189: 108481
38 Casati R, Lemke J, Vedani M. Microstructure and fracture behavior of 316L austenitic stainless steel produced by selective laser melting [J]. J. Mater. Sci. Technol., 2016, 32: 738
39 Yu C F, Zhong Y, Zhang P, et al. Effect of build direction on fatigue performance of L-PBF 316L stainless steel [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 539
40 Güden M, Yavaş H, Tanrıkulu A A, et al. Orientation dependent tensile properties of a selective-laser-melt 316L stainless steel [J]. Mater. Sci. Eng., 2021, A824: 141808
41 Shiau C H, McMurtrey M D, O'Brien R C, et al. Deformation behavior and irradiation tolerance of 316 L stainless steel fabricated by direct energy deposition [J]. Mater. Des., 2021, 204: 109644
42 Zhang K, Wang S J, Liu W J, et al. Characterization of stainless steel parts by laser metal deposition shaping [J]. Mater. Des., 2014, 55: 104
43 Katayama S, Matsunawa A. Solidification microstructure of laser welded stainless steels [J]. ICALEO, 1984, 1984: 60
44 Ren J, Mahajan C, Liu L, et al. Corrosion behavior of selectively laser melted CoCrFeMnNi high entropy alloy [J]. Metals, 2019, 9: 1029
45 Salman O O, Gammer C, Chaubey A K, et al. Effect of heat treatment on microstructure and mechanical properties of 316L steel synthesized by selective laser melting [J]. Mater. Sci. Eng., 2019, A748: 205
46 Montero-Sistiaga M L, Godino-Martinez M, Boschmans K, et al. Microstructure evolution of 316L produced by HP-SLM (high power selective laser melting) [J]. Addit. Manuf., 2018, 23: 402
47 Wang D, Song C H, Yang Y Q, et al. Investigation of crystal growth mechanism during selective laser melting and mechanical property characterization of 316L stainless steel parts [J]. Mater. Des., 2016, 100: 291
48 Krakhmalev P, Fredriksson G, Svensson K, et al. Microstructure, solidification texture, and thermal stability of 316 L stainless steel manufactured by laser powder bed fusion [J]. Metals, 2018, 8: 643
49 Li Z, He B, Guo Q. Strengthening and hardening mechanisms of additively manufactured stainless steels: The role of cell sizes [J]. Scr. Mater., 2020, 177: 17
50 Wang P, Goh M H, Li Q, et al. Effect of defects and specimen size with rectangular cross-section on the tensile properties of additively manufactured components [J]. Virtual Phys. Prototy., 2020, 15: 251
doi: 10.1080/17452759.2020.1733430
51 Zheng Z B, Long J, Wang S, et al. Cavitation erosion-corrosion behaviour of Fe-10Cr martensitic steel microalloyed with Zr in 3.5% NaCl solution [J]. Corros. Sci., 2021, 184: 109382
52 Cherry J A, Davies H M, Mehmood S, et al. Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting [J]. Int. J. Adv. Manuf. Technol., 2015, 76: 869
53 Stout K J, Blunt L. Three Dimensional Surface Topography [M]. 2nd Ed., London: Kogan Page Ltd., 2000: 157
[1] 于云鹤, 谢勇, 陈鹏, 董浩凯, 侯纪新, 夏志新. 316L不锈钢表面激光熔化沉积CoCrNiCu中熵合金的界面相容性[J]. 金属学报, 2024, 60(9): 1213-1228.
[2] 张星星, LUTZ Andreas, 甘为民, MAAWAD Emad, KRIELE Armin. 退火热处理对增材制造AlSi10Mg合金宏观和微观变形行为的影响[J]. 金属学报, 2024, 60(8): 1091-1099.
[3] 高瞻, 张泽荣, 程军胜, 王秋良. Nb3Sn超导线材中Ta层的去除及腐蚀机理[J]. 金属学报, 2024, 60(7): 968-976.
[4] 谢云, Zhang Jianqiang, 彭晓. Ni-Cr合金在富CO2 气氛中的高温腐蚀研究进展[J]. 金属学报, 2024, 60(6): 731-742.
[5] 熊毅, 栾泽伟, 马云飞, 厉勇, 查小琴. 超音速微粒轰击诱导表面纳米化对300M钢腐蚀疲劳行为的影响[J]. 金属学报, 2024, 60(5): 627-638.
[6] 刘壮壮, 丁明路, 谢建新. 金属3D打印数字化制造研究进展[J]. 金属学报, 2024, 60(5): 569-584.
[7] 曾立, 王桂兰, 张海鸥, 翟文正, 张勇, 张明波. 电弧微铸锻复合增材制造GH4169D高温合金的显微组织与力学性能[J]. 金属学报, 2024, 60(5): 681-690.
[8] 黎康杰, 孙泽羽, 何蓓, 田象军. 基于熔池原位冶金的电弧增材制造Al-Cu-Li合金显微组织与硬度[J]. 金属学报, 2024, 60(5): 661-669.
[9] 潘霞, 张洋鹏, 董志宏, 陈胜虎, 姜海昌, 戎利建. 预氧化处理对12Cr铁素体/马氏体钢耐Pb-Bi腐蚀性能的影响[J]. 金属学报, 2024, 60(5): 639-649.
[10] 黄建松, 裴文, 徐诗彤, 白勇, 姚美意, 胡丽娟, 谢耀平, 周邦新. Nb锆合金在含氧蒸汽中耐腐蚀性能恶化的机理[J]. 金属学报, 2024, 60(4): 509-521.
[11] 孙徕博, 黄陆军, 黄瑞生, 徐锴, 武鹏博, 龙伟民, 姜风春, 方乃文. 超声冲击对增材制造组织改善及强化机理影响的研究进展[J]. 金属学报, 2024, 60(3): 273-286.
[12] 张楠, 张海武, 王淼辉. 微米级选区激光熔化316L不锈钢的拉伸力学性能[J]. 金属学报, 2024, 60(2): 211-219.
[13] 周小卫, 荆雪艳, 傅瑞雪, 王宇鑫. Ni-Co-Zn三元合金的共沉积行为及耐蚀机制[J]. 金属学报, 2024, 60(11): 1499-1511.
[14] 耿汝伟, 王林, 魏正英, 麻宁绪. 铝合金熔滴复合电弧增材组织演化及外延生长特性[J]. 金属学报, 2024, 60(11): 1584-1594.
[15] 曾云鹏, 严伟, 史显波, 闫茂成, 单以银, 杨柯. Cu含量对管线钢耐微生物腐蚀性能的影响[J]. 金属学报, 2024, 60(1): 43-56.