Please wait a minute...
金属学报  2021, Vol. 57 Issue (3): 340-352    DOI: 10.11900/0412.1961.2020.00195
  研究论文 本期目录 | 过刊浏览 |
690 MPa级高强韧低碳微合金建筑结构钢设计及性能
朱雯婷1, 崔君军1, 陈振业1,2, 冯阳1, 赵阳3, 陈礼清1()
1.东北大学 轧制技术及连轧自动化国家重点实验室 沈阳 110819
2.河钢集团钢研总院 技术研究所 石家庄 050000
3.东北大学 材料科学与工程学院 沈阳 110819
Design and Performance of 690 MPa Grade Low-Carbon Microalloyed Construction Structural Steel with High Strength and Toughness
ZHU Wenting1, CUI Junjun1, CHEN Zhenye1,2, FENG Yang1, ZHAO Yang3, CHEN Liqing1()
1.State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
2.Technical Department, Technology Research Institute of HBIS, Shijiazhuang 050000, China
3.School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
引用本文:

朱雯婷, 崔君军, 陈振业, 冯阳, 赵阳, 陈礼清. 690 MPa级高强韧低碳微合金建筑结构钢设计及性能[J]. 金属学报, 2021, 57(3): 340-352.
Wenting ZHU, Junjun CUI, Zhenye CHEN, Yang FENG, Yang ZHAO, Liqing CHEN. Design and Performance of 690 MPa Grade Low-Carbon Microalloyed Construction Structural Steel with High Strength and Toughness[J]. Acta Metall Sin, 2021, 57(3): 340-352.

全文: PDF(6125 KB)   HTML
摘要: 

基于JMatPro热力学软件计算并考虑化学元素间相互影响,设计了690 MPa级抗震耐蚀防火功能结构一体化高强建筑用钢,其化学成分(质量分数,%)主要为:Fe-0.08C-0.3Si-1.1Mn-0.12(Nb + V + Ti)-1.6(Cr + Cu +Ni + Mo)-0.002B-0.004N。经实验室冶炼和控轧控冷工艺(TMCP)处理后,采用EPMA、EBSD等多种微观分析和性能测试手段对该低碳微合金钢的微观组织特征、强韧化机理和力学性能、防火性及耐蚀性等进行了表征和分析。结果表明,所设计的低碳微合金钢TMCP状态下的微观组织包含粒状贝氏体、板条贝氏体和贝氏体铁素体;室温下屈服强度达700 MPa,抗拉强度为878 MPa,屈强比为0.80,断后延伸率为20%,并具有良好的低温韧性。低碳微合金钢在600℃保温1~3 h时,均达到耐火性能要求;并对其在海洋环境下的耐蚀性进行了评价,发现粒状贝氏体对耐腐蚀性能具有积极作用。进一步分析表明,低碳微合金钢具有良好的强韧性源于析出强化、细晶强化、位错强化和固溶强化的综合作用;对低温冲击断口截面组织分析表明,裂纹会多次穿过板条贝氏体呈“Z”字型扩展以消耗更多的能量,也是该钢具有良好低温韧性的原因。

关键词 低碳微合金钢微观组织强韧化机理力学性能耐火性能耐腐蚀性能    
Abstract

The rapid development of high-rise buildings has increasingly brought requirements for construction steels with high strength and toughness. For high-rise building structural steels with low yield ratio, good weldability and excellent resistance to fire and corrosion are generally required. However, high grade construction steels with comprehensive properties are yet to be developed. In this study, a 690 MPa grade functionally structured fire and corrosion resistant high strength construction steel was designed based on the thermodynamic calculations of the JMatPro software and interactions among chemical elements. The chemical composition (mass fraction, %) of the designed steel was Fe-0.08C-0.3Si-1.1Mn-0.12(Nb + V + Ti)-1.6(Cr + Cu + Ni + Mo)-0.002B-0.004N. After laboratory melting and a thermomechanical controlled process (TMCP), the microstructure features, strengthening and toughening mechanisms, mechanical properties, and fire and corrosion resistances were characterized and analyzed by EPMA, EBSD, and performance testing. Results show that the microstructure of this low-carbon microalloyed steel at its TMCP state is mainly composed of bainite ferrite, granular bainite, and lath-like bainite. The yield strength, tensile strength, total elongation, and yield ratio at room temperature are 700 MPa, 878 MPa, 20%, and 0.80, respectively, and this steel possesses good low-temperature toughness. This low-carbon microalloyed steel meets requirements for fire resistance at elevated temperatures up to 600oC for 3 h. It is disclosed that the granular bainite plays a positive role in improving corrosion resistance under marine environment. A further analysis shows that the tested steel possesses excellent strength and toughness resulting from the cumulative effects of precipitation strengthening, grain refinement strengthening, dislocation strengthening, and solid solution strengthening. Moreover, after observation and analysis of crack initiation and propagation underneath the fractured surface of low-temperature impacted samples, the microvoids prefer to nucleate at high-angle boundaries containing brittle phases and grow in a Z-type to cross lath-like bainite to consume more energy. Multiple crack deflections are beneficial for toughness improvements.

Key wordslow-carbon microalloyed steel    microstructure    strengthening and toughening mechanism    mechanical property    fire resistance    corrosion resistance
收稿日期: 2020-06-03     
ZTFLH:  TG113  
基金资助:国家自然科学基金项目(51904071);中央高校基本科研业务费项目(N180703011);河北省重点研发计划项目(182-11019D);辽宁省博士科研启动基金项目(2020-BS-271)
作者简介: 朱雯婷,女,1992年生,博士生
图1  实验用钢各相析出量和析出温度的计算曲线
图2  元素含量对实验用钢中M23C6和M(C, N)相质量分数的影响
图3  实验用钢控轧控冷工艺(TMCP)示意图
图 4  实验用钢不同厚度处的SEM像(a) 1/8 thickness(b) 1/4 thickness(c) 1/2 thickness
图 5  实验用钢不同厚度处的EBSD像及测量点-点取向差剖面距离与取向差的关系
图 6  实验用钢不同厚度处的极化曲线
图 7  实验用钢不同厚度处的Nyquist图
图 8  实验用钢1/4厚度处的拉伸应力-应变曲线
图 9  实验用钢不同厚度处的高倍SEM像和C元素分布图(a, b) 1/8 thickness (c, d) 1/4 thickness (e, f) 1/2 thickness
图10  粒状贝氏体和板条贝氏体中C原子扩散示意图
图11  TMCP处理的实验用钢在1/4厚度处析出物形貌的TEM像(a) (Ti, V)C (b) (Ti, Nb)(C, N)
图12  实验用钢在不同温度下1/4厚度处冲击断口附近形貌和裂纹扩展的SEM像(a) 20oC (b, c) -20oC (d, e) -40oC (f) -60oC
图13  实验用钢在不同温度下1/4厚度处断口附近形貌和裂纹扩展的EBSD像
1 Ishii T, Fujisawa S, Ohmori A. Overview and application of steel materials for high-rise buildings [J]. JFE Tech. Rep., No.14, 2009: 1
2 Sakumoto Y. Recent trends and future direction in the technology for structural steels used in buildings [J]. Nippon Steel Tech. Rep., No.97, 2008: 8
3 Yu Q B, Zhao X P, Sun B, et al. Yield-strength ratio of steel plate for high-rise building [J]. Iron Steel, 2007, 42(11): 74
3 于庆波, 赵贤平, 孙 斌等. 高层建筑用钢板的屈强比 [J]. 钢铁, 2007, 42(11): 74
4 Kato B. Role of strain-hardening of steel in structural performance [J]. ISIJ Int., 1990, 30: 1003
5 Kim Y, Lee J, Park J, et al. Effect of Si content on wettability of dual phase high strength steels by liquid Zn-0.23 wt.%Al [J]. Met. Mater. Int., 2011, 17: 607
6 Huang G, Wu K M. The effect of relaxing on the grain refinement of low carbon high strength microalloyed steel produced by compact strip production [J]. Met. Mater. Int., 2011, 17: 847
7 Prasad S N, Mediratta S R, Sarma D S. Influence of austenitisation temperature on the structure and properties of weather resistant steels [J]. Mater. Sci. Eng., 2003, A358: 288
8 Prasad S N, Sarma D S. Influence of thermomechanical treatment on microstructure and mechanical properties of a microalloyed (Nb+V) weather-resistant steel [J]. Mater. Sci. Eng., 2005, A399: 161
9 Zhao Y T, Yang S W, Shang C J, et al. The mechanical properties and corrosion behaviors of ultra-low carbon microalloying steel [J]. Mater. Sci. Eng., 2007, A454-455: 695
10 Baker T N. Processes, microstructure and properties of vanadium microalloyed steels [J]. Mater. Sci. Technol., 2009, 25: 1083
11 Lee S I, Lee J, Hwang B. Microstructure-based prediction of yield ratio and uniform elongation in high-strength bainitic steels using multiple linear regression analysis [J]. Mater. Sci. Eng., 2019, A758: 56
12 Hulka K, Kern A, Schriever U. Application of niobium in quenched and tempered high-strength steels [J]. Mater. Sci. Forum., 2005, 500-501: 519
13 Yang H, Yang H, Qu J B. Effect of heat treatment on microstructure and mechanical properties of a 690 MPa grade high strength steel with low yield ratio [J]. Trans. Mater. Heat Treat., 2013, 34(5): 137
13 杨 浩, 杨 汉, 曲锦波. 热处理工艺对690 MPa级低屈强比高强钢组织性能的影响 [J]. 材料热处理学报, 2013, 34(5): 137
14 Tong M W. Development of 550/690MPa high strength-toughness construction steels with low yield ratio and research of its anti-fracture performance [D]. Wuhan: Wuhan University of Science and Technology, 2016
14 童明伟. 550/690MPa级高强韧低屈强比结构钢开发及抗断能力研究 [D]. 武汉: 武汉科技大学, 2016
15 Keiji U, Shigeru E, Takayuki I. 780 MPa grade steel plates with low yield ratio by microstructural control of dual phase [J]. JFE Technical Report, 2007, (18): 23
15 植田 圭治, 遠藤 茂, 伊藤 高幸. 硬質第2相分散組織制御型低YR780MPa級鋼板 [J]. JFE技報, 2007, (18): 23
16 Hui Y J, Zhao A M, Zhao Z Z, et al. Study on ultra-low carbon bainite steel with low yield ratio for engineering machinery [J]. Trans. Mater. Heat Treat., 2012, 33(Suppl.II):92
16 惠亚军, 赵爱民, 赵征志等. 低屈强比超低碳贝氏体型工程机械用钢的研究 [J]. 材料热处理学报, 2012, 33(增刊II):92
17 Zhou Y L, Chen J, Xu Y, et al. Effects of Cr, Ni and Cu on the corrosion behavior of low carbon microalloying steel in a Clcontaining environment [J]. J. Mater. Sci. Technol., 2013, 29: 168
18 Misra R D K, Nathani H, Hartmann J E, et al. Microstructural evolution in a new 770 MPa hot rolled Nb-Ti microalloyed steel [J]. Mater. Sci. Eng., 2005, A394: 339
19 Hu J, Du L X, Wang W H, et al. Microstructural control and mechanical properties of 590 MPa grade hot-rolled V-N high strength steel [J]. J. Northeast. Univ. (Nat. Sci.), 2013, 34: 820
19 胡 军, 杜林秀, 王万慧等. 590 MPa级热轧V-N高强车轮钢组织性能控制 [J]. 东北大学学报(自然科学版), 2013, 34: 820
20 Xu M, Sun X J, Liu Q Y, et al. Microstructural evolution and precipitation of V(C, N) in a low-carbon V-bearing steel [J]. Iron Steel Vanad. Titan., 2005, 26(2): 25
20 徐 曼, 孙新军, 刘清友等. 低碳含钒钢组织变化及V(C, N)析出规律 [J]. 钢铁钒钛, 2005, 26(2): 25
21 Kanga J S, Seol J B, Park C G. Three-dimensional characterization of bainitic microstructures in low-carbon high-strength low-alloy steel studied by electron backscatter diffraction [J]. Mater. Charact., 2013, 79: 110
22 Sung H K, Lee D H, Shin S Y, et al. Effect of finish cooling temperature on microstructure and mechanical properties of high-strength bainitic steels containing Cr, Mo, and B [J]. Mater. Sci. Eng., 2015, A624: 14
23 Ohmori Y, Ohtani H, Kunitake T. Tempering of the bainite and the bainite/martensite duplex structure in a low-carbon low-alloy steel [J]. Met. Sci., 1974, 8: 357
24 Bhadeshia H K D H. Models for the Elementary Mechanical Properties of Steel Welds [M]. London: Institute of Materials, 1997: 229
25 Yong Q L. Secondary Phases in Steels [M]. Beijing: Metallurgy Industry Press, 2006: 159
25 雍岐龙. 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006: 159
26 Kim Y W, Song S W, Seo S J, et al. Development of Ti and Mo micro-alloyed hot-rolled high strength sheet steel by controlling thermomechanical controlled processing schedule [J]. Mater. Sci. Eng., 2013, A565: 430
27 Tang X C, Wang X F, Zhang Z J. Research on precipitation behavior and strengthening mechanism of low carbon bainitic high strength steel [J]. Hot Work. Technol., 2018, 47(16): 92
27 唐兴昌, 王向飞, 张志坚. 低碳贝氏体高强钢的析出行为及强化机理研究 [J]. 热加工工艺, 2018, 47(16): 92
28 Hall E O. The deformation and ageing of mild steel: III Discussion of results [J]. Proc. Phys. Soc., 1951, 64B: 747
29 Petch N J, Stables P. Delayed fracture of metals under static load [J]. Nature, 1952, 169: 842
30 Bhadeshia H K D H. Bainite in Steels: Transformations, Microstructure and Properties [M]. 2nd Ed., London: IOM Communications, 2001: 1
31 Gladman T. Precipitation hardening in metals [J]. Mater. Sci. Technol., 1999, 15: 30
32 Hu J, Du L X, Xie H, et al. Microstructure and mechanical properties of TMCP heavy plate microalloyed steel [J]. Mater. Sci. Eng., 2014, A607: 122
33 Cui J J, Zhu W T, Chen Z Y, et al. Effect of simulated cooling time on microstructure and toughness of CGHAZ in novel high-strength low-carbon construction steel [J]. Sci. Technol. Weld. Joining, 2020, 25: 169
34 Chen J, Tang S, Liu Z Y, et al. Microstructural characteristics with various cooling paths and the mechanism of embrittlement and toughening in low-carbon high performance bridge steel [J]. Mater. Sci. Eng., 2013, A559: 241
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[8] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[13] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[14] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[15] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.