Please wait a minute...
金属学报  2013, Vol. 49 Issue (6): 717-724    DOI: 10.3724/SP.J.1037.2012.00679
  论文 本期目录 | 过刊浏览 |
Zr-0.4Fe-1.0Cr-x Mo合金在500℃和10.3 MPa水蒸汽中的腐蚀行为
韦天国1),龙冲生1),苗志1),刘云明1),栾佰峰2)
1)中国核动力研究设计院反应堆燃料及材料重点实验室, 成都 610041
2)重庆大学材料科学与工程学院, 重庆 400044
CORROSION BEHAVIOR OF Zr-0.4Fe-1.0Cr-x Mo ALLOYS IN 500℃ and 10.3 MPa STEAM
WEI Tianguo1), LONG Chongsheng1), MIAO Zhi1), LIU Yunming1)
1)Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu 610041
2)Institute of Material Science and Technology, Chongqing University, Chongqing 400044
全文: PDF(2553 KB)  
摘要: 

采用真空非自耗电弧熔炼方法制备了4种不同Mo含量的Zr-0.4Fe-1.0Cr-xMo(x=0, 0.2, 0.4, 0.6, 质量分数, %)合金材料,研究了其在500℃, 10.3 MPa过热水蒸汽中的耐腐蚀性能以及添加Mo对合金耐腐蚀性能的影响.结果表明, Zr-0.4Fe-1.0Cr-xMo合金中含有大量细小的第二相粒子, 其腐蚀速率远远低于Zr-4,N18和M5合金. Mo的添加促进了氧化膜生长过程中的演变, 降低了耐腐蚀性能.不含Mo合金的氧化膜生长动力学在整个腐蚀周期(2000 h)内一直保持近似立方规律,而含Mo合金的氧化膜生长动力学在500--1000 h内由近似立方规律向直线规律转变.

关键词 锆合金Mo耐腐蚀性能第二相粒子氧化膜    
Abstract

The possibility of using Mo as an alloying element in zirconium alloys was considered in terms of its strengthening effect and microstructure refinement effect. However, the impact of Mo addition on the corrosion resistance was not fully understood. In this work, Zr-0.4Fe-1.0Cr-x Mo (x=0, 0.2, 0.4, 0.6, mass fraction,%) alloys with addition of different Mo contents were prepared by vacuum arc melting method and their corrosion resistance in 500℃, 10.3 MPa steam was investigated. Compared with Zr-4, N18 and M5 alloys, the corrosion rate of Zr-0.4Fe-1.0Cr-x Mo alloys was much lower, which was attributed to the large numbers of fine second phase particles in the matrix. Addition of Mo improved the evolution of the oxide film during growth and resulted in the degradation of corrosion resistance. The growth of the oxides remained cubic kinetics in the whole corrosion period (2000 h) for the Mo free alloy, whereas changed from cubic to linear kinetics after a corrosion time of 500--1000 h for the Mo containing alloys.

Key wordszirconium alloy    Mo    corrosion resistance, second phase particle    oxide film
收稿日期: 2012-11-12     
基金资助:

国家自然科学基金资助项目51171175

通讯作者: 龙冲生     E-mail: erde@yeah.net
作者简介: 韦天国, 男, 1985年生, 硕士

引用本文:

韦天国,龙冲生,苗志,刘云明,栾佰峰. Zr-0.4Fe-1.0Cr-x Mo合金在500℃和10.3 MPa水蒸汽中的腐蚀行为[J]. 金属学报, 2013, 49(6): 717-724.
WEI Tianguo, LONG Chongsheng, MIAO Zhi, LIU Yunming, LUAN Baifeng. CORROSION BEHAVIOR OF Zr-0.4Fe-1.0Cr-x Mo ALLOYS IN 500℃ and 10.3 MPa STEAM. Acta Metall Sin, 2013, 49(6): 717-724.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2012.00679      或      https://www.ams.org.cn/CN/Y2013/V49/I6/717

[1] Mardon J P, Charquet D, Senevat J. In: Sabol G P, Moan G D eds.,Zirconium in the Nuclear Industry: 12th International Symposium, ASTM STP 1354,West Conshonocken: ASTM International, 2000: 505

[2] Comstock R J, Schoenberger G, Sabol G P. In: Bradley E R, Sabol G P eds.,Zirconium in the Nuclear Industry: 11th International Symposium,  ASTM STP 1295,West Conshonocken: ASTM International, 1996: 710
[3] Garde A. In: Limbak M, Bareris P eds.,  Zirconium in the Nuclear Industry,16th International Symposium, ASTM STP 1529, West Conshonocken: ASTM International, 2010: 9
[4] Pahutova M, Kucharova K, Cadek J.  Mater Sci Eng, 1977; 27: 239
[5] Pahutova M, Cadek J.  Mater Sci Eng, 2004; 33: 1362
[6] Chun Y B, Hwang S K, Kim M H, Kwun S I, Kim Y S.  J Nucl Mater, 1999; 265: 28
[7] Isobe T, Matsuo Y. In: Eucken C M, Garde A M eds.,Zirconium in the Nuclear Industry, 9th International Symposium, ASTM STP 1132,West Conshonocken: ASTM International, 1991: 346
[8] Chun Y B, Hwang S K, Kwun S I, Kim M H.  Scr Mater, 1999; 40: 1165
[9] Lee J H, Hwang S K, Yasuda K, Kinoshita C.  J Nucl Mater, 2001; 289: 334
[10] Moon J R, Lees D G.  Corros Sci, 1970; 10: 85
[11] Moon J R, Evans E W.  Corros Sci, 1969; 9: 323
[12] Lee J H, Hwang S K.  J Nucl Mater, 2003; 321: 238
[13] George P S, Robert J C, Umesh P N. In: Sabol G P, Moan G D eds.,Zirconium in the Nuclear Industry: 12th International Syposium, ASTM STP 1354,West Conshonocken: ASTM International, 2000: 525
[14] Motta A T, Aylin Y, Marcelo J G, Comstock R J, Was G S, Busby J T,Gartner E, Peng Q J, Jeong Y H, Park J Y.  J Nulc Mater, 2007; 371: 61
[15] Wang J, Long C S, Xiong J, Miao Z, Fang H Y, Huang Z H, Ying S H.  Nucl Power Eng,2009; 30: 58
(王均, 龙冲生, 熊计, 苗志, 范洪远, 黄照华, 应诗浩. 核动力工程, 2009; 30: 58)
[16] Yao M Y, Wang J H, Peng J C, Zhou B X, Li Q. In: Limbak M, Bareris P eds.,Zirconium in the Nuclear Industry, 16th International Symposium, ASTM STP 1529, West Conshonocken:ASTM International, 2011: 466
[17] Li S L, Yao M Y, Zhang X, Geng J Q, Peng J C, Zhou B X.  Acta Metall Sin, 2011; 47: 163
(李士炉, 姚美意, 张欣, 耿建桥, 彭建超, 周邦新. 金属学报, 2011; 47: 163)
[18] Yao M Y, Li S L, Zhang X, Peng J C, Zhou B X, Zhao X S, Shen J Y.  Acta Metall Sin, 2011; 47: 865
(姚美意, 李士炉, 张欣, 彭建超, 周邦新, 赵旭山, 沈剑韵. 金属学报, 2011; 47: 865)
[19] Barberis P, Merle-Mejean T, Quintard P.  J Nulc Mater, 1997; 246: 232
[20] Barberis P, Corroleur T G, Guinbretiere R, Merle M T, Mirgorodsky A,Quintard P.  J Nulc Mater, 2001; 288: 241
[21] Godlewski J, Gross J P, Lambertin M, Wadier J F, Weidinger H. In:Eucken C M, Garde A M eds.,  Zirconium in the Nuclear Industry, 9th International Symposium,ASTM STP 1132, West Conshonocken: ASTM International, 1991: 416
[22] Liu J Z ed.  Nuclear Structural Materials. Beijing: Chemical Industry Press, 2007: 27
(刘建章~ 主编. 核结构材料. 北京: 化学工业出版社, 2007: 27)
[23] Li Q, Zhou B X, Yao M Y, Liu W Q, Chu Y L.  Rare Met Mater Eng, 2007; 36: 1358
(李强, 周邦新, 姚美意, 刘文庆, 褚于良. 稀有金属材料与工程, 2007; 36: 1358)
[24] IAEA-TECDOC-996.  Waterside Corrosion of Zirconium Alloys in Nuclear Power Plants. Vienna, IAEA, 1998: 9
[25] Jong H B, Yong H J.  J Nulc Mater, 2000; 280: 235
[26] Zhou B X, Li Q, Yao M Y, Liu W Q, Chu Y L. In: Kamenzind B, Limback M eds.,Zirconium in the Nuclear Industry: 15th International Symposium, ASTM STP 1505,West Conshonocken: ASTM International, 2009: 360
[27] Zhou B X, Li Q, Liu W Q, Yao M Y, Chu Y L.  Rare Met Mater Eng, 2006; 35: 1009
(周邦新, 李强, 刘文庆, 姚美意, 褚于良. 稀有金属材料与工程, 2006; 35: 1009)
[1] 姚小飞, 魏敬鹏, 吕煜坤, 李田野. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56(5): 769-775.
[2] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[3] 钱月,孙蓉蓉,张文怀,姚美意,张金龙,周邦新,仇云龙,杨健,成国光,董建新. NbFe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响[J]. 金属学报, 2020, 56(3): 321-332.
[4] 姚美意,张兴旺,侯可可,张金龙,胡鹏飞,彭剑超,周邦新. Zr-0.75Sn-0.35Fe-0.15Cr合金在250 ℃去离子水中的初期腐蚀行为[J]. 金属学报, 2020, 56(2): 221-230.
[5] 魏琳,王志军,吴庆峰,尚旭亮,李俊杰,王锦程. Mo元素及热处理对Ni2CrFeMox高熵合金在NaCl溶液中耐蚀性能的影响[J]. 金属学报, 2019, 55(7): 840-848.
[6] 姚美意, 林雨晨, 侯可可, 梁雪, 胡鹏飞, 张金龙, 周邦新. Sn对锆合金在280 LiOH水溶液中初期腐蚀行为的影响[J]. 金属学报, 2019, 55(12): 1551-1560.
[7] 潘栋, 赵宇光, 徐晓峰, 王艺橦, 江文强, 鞠虹. 高能瞬时电脉冲处理对42CrMo钢组织与性能的影响[J]. 金属学报, 2018, 54(9): 1245-1252.
[8] 张可, 孙新军, 张明亚, 李昭东, 叶晓瑜, 朱正海, 黄贞益, 雍岐龙. Ti-V-Mo复合微合金钢中(Ti, V, Mo)C在γ /α中沉淀析出的动力学[J]. 金属学报, 2018, 54(8): 1122-1130.
[9] 龚永勇, 程书敏, 钟玉义, 张云虎, 翟启杰. 脉冲磁致振荡凝固技术[J]. 金属学报, 2018, 54(5): 757-765.
[10] 文明月, 董文超, 庞辉勇, 陆善平. 一种Fe-Cr-Ni-Mo高强钢焊接热影响区的显微组织与冲击韧性研究[J]. 金属学报, 2018, 54(4): 501-511.
[11] 张笑一, 尚海龙, 马冰洋, 李荣斌, 李戈扬. 镀膜Al箔钎料对AlN陶瓷的钎焊[J]. 金属学报, 2018, 54(4): 575-580.
[12] 李斌, 林小辉, 李瑞, 张国君, 李来平, 张平祥. 不同B含量Mo-Si-B合金的高温抗氧化性能[J]. 金属学报, 2018, 54(12): 1792-1800.
[13] 杜瑜宾, 胡小锋, 姜海昌, 闫德胜, 戎利建. 回火时间对Fe-Cr-Ni-Mo高强钢碳化物演变及力学性能的影响[J]. 金属学报, 2018, 54(1): 11-20.
[14] 张可, 李昭东, 隋凤利, 朱正海, 章小峰, 孙新军, 黄贞益, 雍岐龙. 冷却速率对Ti-V-Mo复合微合金钢组织转变及力学性能的影响[J]. 金属学报, 2018, 54(1): 31-38.
[15] 胡小锋, 姜海昌, 赵明久, 闫德胜, 陆善平, 戎利建. 一种Fe-Cr-Ni-Mo高强高韧合金钢焊接接头的组织和力学性能[J]. 金属学报, 2018, 54(1): 1-10.