Please wait a minute...
金属学报  2017, Vol. 53 Issue (10): 1393-1401    DOI: 10.11900/0412.1961.2017.00271
  研究论文 本期目录 | 过刊浏览 |
碳离子注入医用Ti性能研究
夏超1,2, 钱仕1, 王东辉1, 刘宣勇1()
1 中国科学院上海硅酸盐研究所 上海 200050
2 中国科学院大学 北京 100049
Properties of Carbon Ion Implanted Biomedical Titanium
Chao XIA1,2, Shi QIAN1, Donghui WANG1, Xuanyong LIU1()
1 Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
引用本文:

夏超, 钱仕, 王东辉, 刘宣勇. 碳离子注入医用Ti性能研究[J]. 金属学报, 2017, 53(10): 1393-1401.
Chao XIA, Shi QIAN, Donghui WANG, Xuanyong LIU. Properties of Carbon Ion Implanted Biomedical Titanium[J]. Acta Metall Sin, 2017, 53(10): 1393-1401.

全文: PDF(5735 KB)   HTML
摘要: 

采用等离子体浸没离子注入与沉积(PIII&D)技术将碳离子注入Ti基体,研究碳离子注入对材料表面形貌、结构和组成的影响,评价改性材料的表面亲水性、荷电性、力学性能、耐腐蚀性以及细菌黏附能力和细胞相容性,探讨材料的结构和组成对其生物学性能的影响。结果表明,碳等离子体浸没离子注入与沉积(C-PIII&D)技术处理的Ti基体表面主要由无定形碳组成。经碳离子注入改性,Ti表面形貌无明显变化,但其疏水性增加,表面负电性提升,表面力学性能和耐腐蚀性能得到提高。基体表面细胞的黏附、铺展和增殖情况良好,同时对大肠杆菌的黏附具有一定的抑制作用。

关键词 Ti等离子体浸没离子注入与沉积C力学性能耐腐蚀性细菌黏附    
Abstract

Titanium and its alloys are widely used in hard tissue replacements because of their good biocompatibility. However, titanium and its alloys cannot meet all of the clinical requirements. In this work, carbon ions were implanted into the titanium surfaces using plasma immersion ion implantation and deposition (PIII&D) technology to improve the mechanical properties, corrosion resistance, and biological and antibacterial activities. Influences of the injected carbon on the surface morphology, composition and structure of titanium were investigated. Hydrophilicity, surface potential, surface mechanical properties, corrosion resistance, bacterial adhesion and biocompatibility of the modified titanium surfaces were evaluated, and the effects which the structure and composition of the modified layer have on their biological properties were elaborated preliminarily. Experimental results show that the modified layer treated by carbon plasma immersion ion implantation and deposition (C-PIII&D) is mainly composed of amorphous carbon. The surface morphology of the modified titanium has no obvious change. However, its surface turns to be more hydrophobic and electronegative, and the surface mechanical properties and corrosion resistance are improved. Cell adhesion, spreading and proliferation on the modified surface are in good condition while the adhesion of E. coli is inhibited to a certain extent.

Key wordsTi,PIII&D    C    mechanical property    corrosion resistance    bacterial adhesion
收稿日期: 2017-07-05     
ZTFLH:  TG174.4  
基金资助:国家杰出青年科学基金项目 No.51525207,国家自然科学基金项目No.51401234及上海市科委科技基金项目No.15441904900
作者简介:

作者简介 夏 超,男,1993年生,硕士生

Instrument Implantation voltage
kV
Implantation pulse duration / μs Pulsing frequency
Hz
Implantation time
h
Target -20 500 10 0.5, 1.0
Cathode arc - 1000 10 -
表1  碳等离子体浸没离子注入与沉积(C-PIII&D)过程中的主要参数
图1  样品表面的SEM像
图2  Ti、C0.5和C1的Raman光谱
图3  样品C0.5和C1的C 1s的高分辨XPS谱
Sample Amorphous carbon Graphite C—O
C0.5 88.9 8.6 2.5
C1 91.5 6.0 2.5
表2  由XPS计算出的样品各拟合峰面积分数
图4  样品表面的润湿接触角
图5  碳离子注入前后Ti表面Zeta电位随电解液pH值的变化曲线
图6  碳离子注入前后Ti表面纳米硬度变化曲线
图7  碳离子注入前后Ti表面的动电位极化曲线
图8  大肠杆菌在碳离子注入改性前后样品表面培养12 h后的SEM像
图9  C-PIII&D改性前后Ti表面细菌黏附机理示意图
图10  小鼠成骨细胞MC3T3-E1在样品表面黏附与铺展的荧光显微镜照片
图11  MC3T3-E1在样品表面的增殖活性
[1] Liu X Y.Biomedical Titanium Alloys and Surface Modification [M]. Beijing: Chemical Industry Press, 2009: 7(刘宣勇. 生物医用钛材料及其表面改性 [M]. 北京: 化学工业出版社, 2009: 7)
[2] Liu X Y, Chu P K, Ding C X.Surface modification of titanium, titanium alloys, and related materials for biomedical applications[J]. Mater. Sci. Eng., 2004, R47: 49
[3] Xue W C, Liu X Y, Zheng X B, et al.In vivo evaluation of plasma-sprayed titanium coating after alkali modification[J]. Biomaterials, 2005, 26: 3029
[4] Hu H J, Liu X Y, Ding C X.Preparation and in vitro evaluation of nanostructured TiO2/TCP composite coating by plasma electrolytic oxidation[J]. J. Alloys Compd., 2010, 498: 172
[5] Bandyopadhyay A, Espana F, Balla V K, et al.Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants[J]. Acta Biomater., 2010, 6: 1640
[6] Qin H, Cao H L, Zhao Y C, et al.In vitro and in vivo anti-biofilm effects of silver nanoparticles immobilized on titanium[J]. Biomaterials, 2014, 35: 9114
[7] Pier-Francesco A, Adams R J, Waters M G J, et al. Titanium surface modification and its effect on the adherence of Porphyromonas gingivalis: An in vitro study[J]. Clin. Oral Implants Res., 2006, 17: 633
[8] Chu P K, Tang B Y, Wang L P, et al.Third-generation plasma immersion ion implanter for biomedical materials and research[J]. Rev. Sci. Instrum., 2001, 72: 1660
[9] Chu P K.Recent developments and applications of plasma immersion ion implantation[J]. J. Vac. Sci. Technol., 2004, 22B: 289
[10] Budzynski P, Youssef A A, Sielanko J.Surface modification of Ti-6Al-4V alloy by nitrogen ion implantation[J]. Wear, 2006, 261: 1271
[11] Johns S M, Bell T, Samandi M, et al.Wear resistance of plasma immersion ion implanted Ti6Al4V[J]. Surf. Coat. Technol., 1996, 85: 7
[12] Thibault S, Hug E.Corrosion and wear mechanisms of aluminum alloys surface reinforced by multicharged N-implantation[J]. Appl. Surf. Sci., 2014, 310: 311
[13] Robic J Y, Piaguet J, Gailliard J P. Some measurements of hardness, wear and stresses in ion implanted thin metallic films [J]. Nucl. Instrum. Methods, 1981, 182-183: 919
[14] Ikeyama M, Nakao S, Morikawa H, et al.Surface hardness changes induced by O-, Ca- or P-ion implantation into titanium[J]. Colloids Surf., 2000, 19B: 263
[15] Xu R Z, Yang X B, Li P H, et al.Eelectrochemical properties and corrosion resistance of carbon-ion-implanted magnesium[J]. Corros. Sci., 2014, 82: 173
[16] Mao L H, Wang Y L, Wan Y Z, et al.Corrosion resistance of Ag-ion implanted Mg-Ca-Zn alloys in SBF[J]. Rare Metall. Mater. Eng., 2010, 39: 2075
[17] Wan Y Z, Raman S, He F, et al.Surface modification of medical metals by ion implantation of silver and copper[J]. Vacuum, 2007, 81: 1114
[18] Xie Y T, Liu X Y, Huang A P, et al.Improvement of surface bioactivity on titanium by water and hydrogen plasma immersion ion implantation[J]. Biomaterials, 2005, 26: 6129
[19] Cao H L, Qiao Y Q, Meng F H, et al.Spacing-dependent antimicrobial efficacy of immobilized silver nanoparticles[J]. J. Phys. Chem. Lett., 2014, 5: 743
[20] Cao H L, Qiao Y Q, Liu X Y, et al.Electron storage mediated dark antibacterial action of bound silver nanoparticles: Smaller is not always better[J]. Acta Biomater., 2013, 9: 5100
[21] Xu Y, Li L H, Chu P K.Deposition of diamond-like carbon films on interior surface of long and slender quartz glass tube by enhanced glow discharge plasma immersion ion implantation[J]. Surf. Coat. Technol., 2015, 265: 218
[22] Estrade-Szwarckopf H, Rousseau B.Photoelectron core level spectroscopy study of Cs-graphite intercalation compounds—I. Clean surfaces study[J]. J. Phys. Chem. Solids, 1992, 53: 419
[23] Bertoncello R, Casagrande A, Casarin M, et al.TiN, TiC and Ti(C, N) film characterization and its relationship to tribological behaviour[J]. Surf. Interface Anal., 1992, 18: 525
[24] Moncoffre N, Hollinger G, Jaffrezic H, et al. Temperature influence during nitrogen implantation into steel [J]. Nucl. Instrum. Methods Phys. Res. Sect., 1985, 7-8B: 177
[25] Coutures J P, Erre R, Massiot D, et al.Ar+ ion beam effects on MxOy-alumina silica glasses[J]. Radiat. Effects, 1986, 98: 83
[26] An Y H, Friedman R J.Concise review of mechanisms of bacterial adhesion to biomaterial surfaces[J]. J. Biomed. Mater. Res., 1998, 43: 338
[27] Wang J, Huang N, Pan C J, et al.Bacterial repellence from polyethylene terephthalate surface modified by acetylene plasma immersion ion implantation-deposition[J]. Surf. Coat. Technol., 2004, 186: 299
[28] Liu Y Z, Zu X T, Wang L, et al.Role of aluminum ion implantation on microstructure, microhardness and corrosion properties of titanium alloy[J]. Vacuum, 2008, 83: 444
[29] Kim B S, Kim J S, Park Y M, et al.Mg ion implantation on SLA-treated titanium surface and its effects on the behavior of mesenchymal stem cell[J]. Mater. Sci. Eng., 2013, C33: 1554
[30] Krupa D, Baszkiewicz J, Kozubowski J A, et al.Effect of calcium-ion implantation on the corrosion resistance and biocompatibility of titanium[J]. Biomaterials, 2001, 22: 2139
[31] Jin G D, Cao H L, Qiao Y Q, et al.Osteogenic activity and antibacterial effect of zinc ion implanted titanium[J]. Colloids Surf., 2014, 117B: 158
[32] Cao H L, Liu X Y, Meng F H, et al.Biological actions of silver nanoparticles embedded in titanium controlled by micro-galvanic effects[J]. Biomaterials, 2011, 32: 693
[33] Hempel F, Finke B, Zietz C, et al.Antimicrobial surface modification of titanium substrates by means of plasma immersion ion implantation and deposition of copper[J]. Surf. Coat. Technol., 2014, 256: 52
[34] Tian Y X, Cao H L, Qiao Y Q, et al.Antibacterial activity and cytocompatibility of titanium oxide coating modified by iron ion implantation[J]. Acta Biomater., 2014, 10: 4505
[35] Yoshinari M, Oda Y, Kato T, et al.Influence of surface modifications to titanium on antibacterial activity in vitro[J]. Biomaterials, 2001, 22: 2043
[36] Poon R W Y, Yeung K W K, Liu X Y, et al. Carbon plasma immersion ion implantation of nickel-titanium shape memory alloys[J]. Biomaterials, 2005, 26: 2265
[37] Mao Y, Li Z G, Feng K, et al.Preparation, characterization and wear behavior of carbon coated magnesium alloy with electroless plating nickel interlayer[J]. Appl. Surf. Sci., 2015, 327: 100
[38] Sui J H, Gao Z Y, Cai W, et al. DLC films fabricated by plasma immersion ion implantation and deposition on the NiTi alloys for improving their corrosion resistance and biocompatibility [J]. Mater. Sci. Eng., 2007, A454-455: 472
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[11] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[12] 陈润农, 李昭东, 曹燕光, 张启富, 李晓刚. 9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源[J]. 金属学报, 2023, 59(7): 926-938.
[13] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[14] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[15] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.