Please wait a minute...
金属学报  2017, Vol. 53 Issue (5): 622-630    DOI: 10.11900/0412.1961.2016.00269
  论文 本期目录 | 过刊浏览 |
Cr对Fe-Cr合金耐蚀性能影响的电子理论研究
王垚1,李春福1,林元华1,2()
1 西南石油大学材料科学与工程学院 成都 6105002
2 西南石油大学油气藏地质及开发工程国家重点实验室 成都 610500
Electronic Theoretical Study of the Influence of Cr on Corrosion Resistance of Fe-Cr Alloy
Yao WANG1,Chunfu LI1,Yuanhua LIN1,2()
1 School of Materials Science and Engineering, Southwest Petroleum University, Chengdu 610500, China
2 State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,
引用本文:

王垚,李春福,林元华. Cr对Fe-Cr合金耐蚀性能影响的电子理论研究[J]. 金属学报, 2017, 53(5): 622-630.
Yao WANG, Chunfu LI, Yuanhua LIN. Electronic Theoretical Study of the Influence of Cr on Corrosion Resistance of Fe-Cr Alloy[J]. Acta Metall Sin, 2017, 53(5): 622-630.

全文: PDF(1268 KB)   HTML
摘要: 

基于固体与分子经验电子理论(EET),对Fe-Cr合金(Cr含量为0~30%,原子分数)的价电子结构进行了半定量分析,利用界面电子密度差Δρ的计算方法,计算了Fe-Cr合金与Cr2O3、Fe2O3钝化膜低指数晶面间的电子密度。结果表明,Fe-Cr合金固溶体的杂化原子轨道数σn、最强键共价电子数nA和最强键键能EA均大于纯Fe,Cr能提高Fe基体的稳定性。当Cr含量达到12.52%和24.3%时,Cr原子从低阶迁移到共价电子数少的高阶状态,不稳定性增加,此时Cr易偏离平衡位置与腐蚀介质作用形成钝化膜,造成Fe-12.52%Cr和Fe-24.3%Cr合金的耐腐蚀性能发生突变。Fe-Cr合金与Cr2O3、Fe2O3钝化膜的24个低指数界面中,只有Fe-Cr(112)/Cr2O3(0001)、Fe-Cr(112)/Cr2O3(101?0)Cr、Fe-Cr(112)/Fe2O3(112?0)界面的Δρ <10%,对于同等Cr含量的基体,Fe-Cr(112)/Cr2O3(101?0)Cr界面Δρ最小,满足Δρ<10%的杂化原子轨道数σ最大。随着基体中Cr含量升高,Fe-Cr(112)/Cr2O3(0001)和Fe-Cr(112)/Fe2O3(112?0)界面Δρ降低,σ增加,Cr2O3、Fe2O3与基体的界面更加稳定牢固,因此Fe-24.3%Cr合金的耐腐蚀性可跃迁至更高水平。价电子结构对Fe-Cr合金耐蚀性能变化的分析结果基本符合Tammann定律的描述。

关键词 经验电子理论耐腐蚀性能钝化膜界面电子密度差Tammann定律    
Abstract

Based on the empirical electron theory (EET) of solids and molecules, the valence electron structure caculation results of Fe-Cr alloy containing (0~30%)Cr were analyzed semi-quantitatively. The electron density differences of interface (Δρ) between Fe-Cr alloy and Cr2O3, Fe2O3 passivation films were calculated. According to the results, adding Cr to α-Fe matrix can strengthen the matrix by improving the number of hybid atomic orbitals σn, the number of the strongest bond covalent electron pairs nA and the strongest covalent bond energy EA of Fe-Cr alloy. Once the content of Cr rises up to 12.52% and 24.3%, the corrosion resistance of Fe-Cr alloy is improved because of Cr being changed to a higher hybrid level, where Cr becomes more unstable and easily reacts with environment to form a complete passivation layer of Cr2O3. Moreover, among the electronic density differences of 24 low-index faces between Fe-Cr and Cr2O3, Fe2O3, only the Δρ of Fe-Cr(112)/ Cr2O3(0001), Fe-Cr(112)/Cr2O3 (101?0)Cr,Fe-Cr(112)/Fe2O3(112?0) are lower than 10%. For the matrix with same content of Cr, the Δρ between Fe-Cr(112) and Cr2O3(101?0)Cr is the lowest, but the number of hybid atomic orbitals σ satisfied Δρ<10% is the largest. Δρ (σ) of Fe-Cr(112)/Cr2O3(0001) and Fe-Cr(112)/Fe2O3(112?0) is decreased (increased) with the increase of Cr, therefore the interface bonding strength between Cr2O3, Fe2O3 and matrix will be enhanced, it has been found that the corrosion resistance of Fe-24.3%Cr is better. The calculation results of variation of Fe-Cr corrosion resistance with Cr content are in better agreement with Tammann's law.

Key wordsempirical    electron    theory,    corrosion    resistance,    passivation    film,    interfacial    electron    density    difference,    Tammann's    law
收稿日期: 2016-07-01     
基金资助:国家高技术研究发展计划项目No.2006AA06A105和西南石油大学油气藏地质及开发工程国家重点实验室基金项目No.PLN0609
图1  M的晶体结构图(M为Fe、Cr 原子组成的平均原子;A、B为不可忽略的共价键)
图2  X2O3 (X=Cr、Fe)晶面原子分布
Crystal face Bond Ia na S / cm2 ρ / nm-2
(110) M-M 4 0.3875 0.1162 14.8559
M-M 2 0.0882
(100) M-M 4 0.0882 0.0822 4.2942
(112) M-M 27 0.3875 0.0503 2.2004
表1  Fe-5%Cr合金的界面电子密度
Crystal face Bond Ia na S / cm2 ρ / nm-2
Cr2O3 Fe2O3 Formula Cr2O3 Fe2O3 Cr2O3 Fe2O3
(0001) O1-O3 6 0.0261 0.0340 32a02 0.2123 0.2187 1.0930 1.2756
O1-O2 12 0.0063 0.0102
(101?0)Cr O1-O2 6 0.0063 0.0102 a0c 0.6736 0.6921 0.0560 0.0884
(101?0)X X1-X2 2 0.4076 0.2186 a0c 0.6736 0.6921 1.9754 1.0957
X1-X3 2 0.2327 0.1456
X1-X4 2 0.0201 0.0111
X1-X5 2 0.0049 0.0039
(112?0) X-O2 4 0.9528 1.1290 3a0c 1.1667 1.1988 6.2157 6.2597
X-O1 4 0.8024 0.6689
X-O3 4 0.0032 0.0033
O1-O3 6 0.0261 0.0340
O1-O4 6 0.0103 0.0160
表2  Cr2O3、Fe2O3的界面电子密度
Atomic fraction Atomic state σn nA EA
of Cr / % Hybridization ncFe Hybridization ncCr kJmol-1
level of Fe level of Cr
0 8 3.5955 - - 3 0.3835 59.8761
1 8 3.5955 1 4 54 0.3840 60.0479
2 8 3.5955 1 4 54 0.3844 60.2197
3 8 3.5955 1 4 54 0.3848 60.3926
4 8 3.5955 3 3.9515 54 0.3851 60.6105
5 8 3.5955 5 3.8779 54 0.3851 60.7721
6 8 3.5955 5 3.8779 54 0.3854 60.8624
7 8 3.5955 5 3.8779 54 0.3857 61.0289
8 7 3.5560 1 4 61 0.3831 60.1916
9 7 3.5560 1 4 65 0.3836 60.3758
10 7 3.5560 2 3.9851 65 0.3839 60.6539
11 7 3.5560 3 3.9515 67 0.3840 60.8699
12 7 3.5560 4 3.9360 67 0.3842 61.0611
12.50 7 3.5560 4 3.9360 68 0.3844 61.1598
12.52 9 3.7743 13 3.1290 68 0.3940 65.3692
13 9 3.7743 13 3.1290 68 0.3937 65.3777
14 7 3.5560 5 3.8779 65 0.3841 61.3981
15 7 3.5560 5 3.8779 64 0.3845 61.6811
16 7 3.5560 5 3.8779 64 0.3848 61.7875
17 9 3.7743 11 3.2932 60 0.3939 65.9435
18 9 3.7743 11 3.2932 58 0.3934 65.9905
19 9 3.7743 10 3.3538 61 0.3941 66.2459
20 9 3.7743 10 3.3538 63 0.3937 66.3043
21 9 3.7743 10 3.3538 64 0.3932 66.3630
22 9 3.7743 9 3.3972 65 0.3938 66.5806
23 9 3.7743 9 3.3972 69 0.3934 66.5781
24 9 3.7743 9 3.3972 71 0.3930 66.7128
24.3 10 3.9723 13 3.1290 71 0.4019 70.2113
25 10 3.9723 13 3.1290 73 0.4013 70.1827
26 10 3.9723 12 3.1635 72 0.4013 70.3102
27 10 3.9723 12 3.1635 70 0.4004 70.2761
28 8 3.5955 6 3.6807 75 0.3861 64.0870
29 8 3.5955 6 3.6807 76 0.3862 64.2539
30 8 3.5955 6 3.6807 78 0.3863 64.6460
表3  Fe-Cr合金的价电子结构
图3  不同Fe-Cr合金中杂化原子轨道数σn和最强键键能EA
图4  不同Fe-Cr合金的Fe、Cr原子杂阶
[1] Chen K M.Corrosion and Protection of Process Equipment [M]. Beijing: Chemical Industry Press, 2001: 84
[1] (陈匡民. 过程装备腐蚀与防护 [M]. 北京: 化学工业出版社, 2001: 84)
[2] Chavchanidze A S, Krementulo A V.Influence of electron structure on the corrosional resistance of iron-based solid solutions in aggre-ssive media[J]. Steel. Transl., 2000, 30: 74
[3] Shcherbakov A I.Theory of dissolution of binary alloys and the Tamman rule[J]. Prot. Met., 2005, 41: 30
[4] Xu L N, Wang B, Zhu J Y, et al.Effect of Cr content on the corrosion performance of low-Cr alloy steel in a CO2 environment[J]. Appl. Surf. Sci., 2016, 379: 39
[5] Kim M, Kim S W, Yoon S H, et al.Effects of Cr content in amorphous ribbons (Fe0.79C0.11Si0.02B0.08)100-xCrx on their corrosion resistance[J]. Korean J. Met. Mater., 2014, 52: 129
[6] Andreev Y Y, Safonov I A, Doub A V.Thermodynamic model for estimating the composition of passive films and flade potential on Fe-Cr alloys in aqueous solutions[J]. Prot. Met. Phys. Chem. Surf., 2010, 46: 509
[7] Alekseev Y V, Plaskeev A V.On the interaction between components of an alloy during its dissolution in the passive state[J]. Prot. Met., 2002, 38: 310
[8] Xiao K, Zhang X, Dong C F, et al.Localized electrochemical impedance spectroscopy study on the corrosion behavior of Fe-Cr alloy in the solution with Cl- and SO42-[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2012, 27: 27
[9] Costa D, Ribeiro T, Mercuri F, et al.Atomistic modeling of corrosion resistance: A first principles study of O2 reduction on the Al(111) surface covered with a thin hydroxylated alumina film[J]. Adv. Mater. Interfaces, 2014, 1: 1300072
[10] Zhang R L.Empirical Electron Theory of Solids and Molecules [M]. Changchun: Jilin Science and Technology Press, 1993: 83
[10] (张瑞林. 固体与分子经验电子理论 [M]. 长春: 吉林科学技术出版社, 1993: 83)
[11] Wang Y F, Li Y K, Sun C, et al.Electronic theoretical model of static and dynamic strength of steels[J]. Acta Phys. Sin., 2014, 63: 126101
[11] (王云飞, 李云凯, 孙川等. 钢动静态强度计算的电子理论模型[J]. 物理学报, 2014, 63: 126101)
[12] Li L, Xing S B.Catalytic effect analysis of metallic catalyst during diamond single crystal synthesis[J]. Acta. Metall. Sin.(Engl. Lett.), 2014, 27: 161
[13] Du A, Ma R N, Wen M, et al.Corrosion mechanism of intermetallic compound Fe2B in liquid zinc[J]. J. Tianjin Univ., 2010, 43: 633
[13] (杜安, 马瑞娜, 温鸣等. 金属间化合物Fe2B在液态锌中的腐蚀机制[J]. 天津大学学报, 2010, 43: 633)
[14] Dai Y N.Binary Alloy Phase Diagrams [M]. Beijing: Science Press, 2009: 240
[14] (戴永年. 二元合金相图集 [M]. 北京: 科学出版社, 2009: 240)
[15] Liu W D, Qu H, Liu Z L.Study on the stability of ductile β phase and the behaviors of alloying elements[J]. Rare Met. Mater. Eng., 2005, 34: 573
[15] (刘伟东, 屈华, 刘志林. 延性β相稳定性与合金元素合金化行为的研究[J]. 稀有金属材料与工程, 2005, 34: 573)
[16] Xiao K, Dong C F, Zhang X, et al.Corrosion of carbon steel under epoxy-varnish coating studied by scanning Kelvin probe[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2012, 27: 825
[17] Qu X S.Research on valence electron theoretics of corrosion resistance of austenitic stainless steels [D]. Jinzhou: Liaoning Institute of Technology, 2007
[17] (屈兴胜. 奥氏体不锈钢耐腐蚀性能的价电子理论研究 [D]. 锦州: 辽宁工学院, 2007)
[18] Liu Z L, Li Z L, Liu W D.Interface Valence Electron Structure and Property [M]. Beijing: Science Press, 2002: 36(刘志林, 李志林, 刘伟东. 界面电子结构与界面性能 [M]. 北京: 科学出版社, 2002: 36)
[19] Yin Y S, Gong H Y, Tan X Y, et al.Study on the interface electron structures of Fe3Al/Al2O3 nano/micro composite[J]. J. Synth. Cryst., 2003, 32: 99
[19] (尹衍升, 龚红宇, 谭训彦等. Fe3Al/Al2O3纳微米复合材料的界面电子结构研究[J]. 人工晶体学报, 2003, 32: 99)
[20] Xu C Q, Cui C X.Investigation of the corrosion resistance of Mo-30W alloy against molten zinc by EET and BLD[J]. Rare Met. Mater. Eng., 2007, 36: 1558
[20] (许长庆, 崔春翔. 固体与分子经验电子论对Mo-30W合金耐液态锌腐蚀性能研究[J]. 稀有金属材料与工程, 2007, 36: 1558)
[21] Fan R H, Yin W Z, Sun K N, et al.Influence of disordering on the magnetic properties of ordered iron aluminides[J]. J. Synth. Cryst., 2005, 34: 606
[21] (范润华, 尹文宗, 孙康宁等. 无序化对有序铁铝金属间化合物磁性的影响[J]. 人工晶体学报, 2005, 34: 606)
[22] Gao Y J, Zhao M, Huang C G, et al.The microscopic mechanism interpret on a precipitate-free zones of γ phase in Al-Ag alloy[J]. Precious Met., 2005, 26(1): 1
[22] (高英俊, 赵妙, 黄创高等. Al-Ag合金γ相周围无沉淀带形成的机理研究[J]. 贵金属, 2005, 26(1): 1)
[23] Zhang Z G, Hou P Y, Niu Y.Oxidation of Fe-xCr-10Al (x=0, 5, 10) alloys at 900 ℃: A novel example of the third element effect[J]. Acta. Metall. Sin., 2005, 41: 649
[23] (张志刚, Hou P Y, 牛焱. Fe-xCr-10Al (x=0, 5, 10)合金在900 ℃的氧化: 第三组元作用的新例子[J]. 金属学报, 2005, 41: 649)
[24] Kasparova O V, Baldokhin Y V, Solomatin A S.On a correlation between the electronic structure and passivability of Fe-Cr alloys[J]. Prot. Met., 2005, 41: 117
[25] Zhang D Q, Xu J J, Zhao G Q, et al.Oxidation characteristic of ferritic-martensitic steel T91 in water-vapour atmosphere[J]. Chin. J. Mater. Res., 2008, 22: 599
[25] (张都清, 徐敬军, 赵国群等. 9Cr-1Mo钢在含水蒸汽气氛中的氧化行为[J]. 材料研究学报, 2008, 22: 599)
[26] Zeng C L, Wang W, Wu W T.A study of the corrosion of Fe-Cr alloys in molten (Li-K)2CO3 at 650 ℃[J]. Acta. Metall. Sin., 2000, 36: 651
[26] (曾潮流, 王文, 吴维?. Fe-Cr合金在650 ℃熔融(Li-K)2CO3中的腐蚀行为[J]. 金属学报, 2000, 36: 651)
[1] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[2] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[3] 汤雁冰, 沈新旺, 刘志红, 乔岩欣, 杨兰兰, 卢道华, 邹家生, 许静. 激光选区熔化Inconel 718合金在NaOH溶液中的腐蚀行为[J]. 金属学报, 2022, 58(3): 324-333.
[4] 黄一川, 王清, 张爽, 董闯, 吴爱民, 林国强. 用于燃料电池双极板的不锈钢成分优化[J]. 金属学报, 2021, 57(5): 651-664.
[5] 朱雯婷, 崔君军, 陈振业, 冯阳, 赵阳, 陈礼清. 690 MPa级高强韧低碳微合金建筑结构钢设计及性能[J]. 金属学报, 2021, 57(3): 340-352.
[6] 吕晨曦, 孙阳庭, 陈斌, 蒋益明, 李劲. 恒电位脉冲技术对317L不锈钢点蚀行为及耐点蚀性能的影响[J]. 金属学报, 2021, 57(12): 1607-1613.
[7] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[8] 李恺强, 杨璐嘉, 徐云泽, 王晓娜, 黄一. SO42-对模拟孔隙液中Q235B钢筋腐蚀行为的影响[J]. 金属学报, 2019, 55(4): 457-468.
[9] 范丽, 陈海龑, 董耀华, 李雪莹, 董丽华, 尹衍升. 激光熔覆铁基合金涂层在HCl溶液中的腐蚀行为[J]. 金属学报, 2018, 54(7): 1019-1030.
[10] 徐江, 鲍习科, 蒋书运. 纳米晶Ta2N涂层在模拟人体环境中的耐蚀性能研究[J]. 金属学报, 2018, 54(3): 443-456.
[11] 夏大海, 宋诗哲, 王俭秋, 骆静利. 690和800合金在高温高压水中硫致腐蚀失效研究进展[J]. 金属学报, 2017, 53(12): 1541-1554.
[12] 徐伟,路新,杜艳霞,孟庆宇,黎鸣,曲选辉. 粉末冶金制备Ti-Fe二元合金的耐腐蚀性能[J]. 金属学报, 2017, 53(1): 38-46.
[13] 陈永君, 胡小刚, 羌建兵, 董闯. 准晶磨料的“碾抹”特性对软金属表面的平整性、硬度及耐蚀性的影响*[J]. 金属学报, 2016, 52(10): 1353-1362.
[14] 朴楠,陈吉,尹成江,孙成,张星航,武占文. 超细晶304L不锈钢在含Cl-溶液中点蚀行为的研究[J]. 金属学报, 2015, 51(9): 1077-1084.
[15] 王波阳,周邦新,王桢,黄娇,姚美意,周军. Zr-0.72Sn-0.32Fe-0.14Cr-xNb合金在500 ℃过热蒸汽中的耐腐蚀性能*[J]. 金属学报, 2015, 51(12): 1545-1552.