Please wait a minute...
金属学报  2024, Vol. 60 Issue (11): 1487-1498    DOI: 10.11900/0412.1961.2022.00481
  研究论文 本期目录 | 过刊浏览 |
粉末冶金Inconel 718合金的热等静压成形和原始颗粒边界的消除
田晓生1,2, 卢正冠1, 徐磊1, 吴杰1(), 杨锐1
1 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
2 中国科学技术大学 材料科学与工程学院 沈阳 110016
Hot Isostatic Densification of Inconel 718 Powder Alloy and Elimination of Prior Particle Boundaries
TIAN Xiaosheng1,2, LU Zhengguan1, XU Lei1, WU Jie1(), YANG Rui1
1 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

田晓生, 卢正冠, 徐磊, 吴杰, 杨锐. 粉末冶金Inconel 718合金的热等静压成形和原始颗粒边界的消除[J]. 金属学报, 2024, 60(11): 1487-1498.
Xiaosheng TIAN, Zhengguan LU, Lei XU, Jie WU, Rui YANG. Hot Isostatic Densification of Inconel 718 Powder Alloy and Elimination of Prior Particle Boundaries[J]. Acta Metall Sin, 2024, 60(11): 1487-1498.

全文: PDF(4834 KB)   HTML
摘要: 

采用无坩埚感应熔炼超声气体雾化法(EIGA) +热等静压工艺制备的大尺寸粉末冶金Inconel 718合金坯料中存在大量原始颗粒边界,恶化了材料的力学性能。本工作通过特殊高温热处理对合金坯料进行组织修复,观察了其显微组织、测试了其力学性能。结果表明,试验型包套成形合金的力学性能与锻件相当。采用相同热等静压工艺成形大型复杂结构件,由于屏蔽效应、制备工艺参数未完全优化等原因,粉末冶金结构件中出现大量原始颗粒边界(PPBs),恶化了Inconel 718合金的拉伸塑性和冲击性能。特殊高温热处理可以有效消除合金坯料中的PPBs,增加颗粒间结合强度,改善合金性能。热等静压+特殊高温热处理可以作为粉末冶金Inconel 718大型复杂结构件成形工艺,结构件本体力学性能与锻件相当。

关键词 Inconel 718合金热等静压热处理原始颗粒边界力学性能    
Abstract

Inconel 718 alloy is widely used in aeronautical fields owing to its excellent mechanical properties and high-temperature resistance. Hot isostatic pressing (HIPing) is a powder metallurgy (PM) processing technology that produces near or net-shape components and solves the problems of macro-segregation and microstructure inhomogeneity. However, the application of PM Inconel 718 alloys has been limited by prior particle boundaries (PPBs), which can negatively impact mechanical properties, such as elongation at elevated temperatures and impact properties. To address this issue, the formation of PPBs can be suppressed during HIPing, or they can be eliminated through subsequent processing. Pre-alloyed powder of Inconel 718 was prepared using the electrode induction melting gas atomization (EIGA) method, and PM Inconel 718 alloys were prepared through the HIPing route. The resulting compacts were subjected to special high-temperature heat treatment, and their mechanical properties were tested. The mechanical properties of PM Inconel 718 test bars were found to be comparable to those of the wrought version of the alloy. However, large and complex components of PM Inconel 718 can contain undesirable PPBs due to mold shielding and insufficient degassing, resulting in poor ductility and impact properties after standard heat treatment. Special high-temperature heat treatment can effectively eliminate the PPBs in the compacts, leading to a substantial improvement in tensile ductility and impact properties. This improvement makes it possible to prepare large and complex components through HIPing with improved mechanical properties.

Key wordsInconel 718 alloy    hot isostatic pressing    heat treatment    prior particle boundary    mechanical property
收稿日期: 2022-09-28     
ZTFLH:  TG132.32  
基金资助:国家科技重大专项项目(J2019-VⅡ-0005-0145);中国科学院战略性先导科技专项项目(XDA22010102);稳定支持基础研究领域青年团队计划项目(YSBR-025)
通讯作者: 吴 杰,jwu10s@imr.ac.cn,主要从事粉末高温结构材料近净成形技术研究
Corresponding author: WU Jie, associate professer, Tel: (024)83978843, E-mail: jwu10s@imr.ac.cn
作者简介: 田晓生,男,1991年生,博士
图1  Inconel 718预合金粉末形貌的SEM像和粒度分布
SampleTemperatureTensile propertyImpact energy
UTS / MPaYS / MPaEl / %Z / %J
Wrought[17]RT1275-14001030-116712.0-21.01530
Component1400107514.51416
Test bar1322104923.03535
Wrought[17]650oC1000-1200860-100012.0-19.015-
Component114091014.516-
Test bar106784515.017-
表1  Inconel 718粉末合金结构件本体和试验型包套制备合金的力学性能
图2  Inconel 718随炉包套试样显微组织的SEM像
图3  不同粒径Inconel 718预合金粉末的等效应变
图4  不同粒径粉末冶金Inconel 718坯料室温拉伸断口形貌的SEM像
图5  粉末冶金Inconel 718合金结构件本体显微组织的SEM像
图6  原始颗粒边界(PPBs)形成过程示意图
SampleTemperatureTensile propertyImpact energy
UTS / MPaYS / MPaEl / %Z / %J
HTRT1398 ± 31070 ± 113.5 ± 1.510 ± 216 ± 1
SHT11398 ± 41182 ± 117.0 ± 3.020 ± 629 ± 1
SHT21394 ± 21087 ± 322.5 ± 1.529 ± 634 ± 1
SHT31430 ± 61215 ± 125.0 ± 1.033 ± 130 ± 2
HT650oC1135 ± 6908 ± 315.0 ± 1.015 ± 1-
SHT11169 ± 14995 ± 512.0 ± 1.519 ± 1-
SHT21166 ± 4959 ± 814.0 ± 1.511 ± 2-
SHT31173 ± 71006 ± 013.5 ± 0.518 ± 0-
表2  粉末冶金Inconel 718合金特殊高温热处理前后的力学性能
图7  粉末冶金Inconel 718合金标准热处理和特殊高温热处理试样显微组织的SEM像
图8  粉末冶金Inconel 718合金标准热处理和特殊高温热处理SHT2试样的EBSD像和晶粒尺寸分布直方图
图9  标准热处理后粉末冶金Inconel 718合金中碳化物的TEM分析
图10  Inconel 718结构件标准热处理和特殊高温热处理试样拉伸断口形貌的SEM像
图11  Inconel 718结构件标准热处理和特殊高温热处理SHT2试样拉伸断口纵截面形貌的SEM像
图12  Inconel 718结构件SHT2样品650℃拉伸断口形貌的SEM像和EDS
图13  Inconel 718结构件标准热处理和SHT2试样室温冲击断口形貌的SEM像
图14  粉末冶金Inconel 718复杂结构件解剖件
1 Chamanfar A, Sarrat L, Jahazi M, et al. Microstructural characteristics of forged and heat treated Inconel-718 disks [J]. Mater. Des., 2013, 52: 791
2 Baccino R, Moret F, Pellerin F, et al. High performance and high complexity net shape parts for gas turbines: The ISOPREC® powder metallurgy process [J]. Mater. Des., 2000, 21: 345
3 Hosseini E, Popovich V A. A review of mechanical properties of additively manufactured Inconel 718 [J]. Addit. Manuf., 2019, 30: 100877
4 Bai Q, Lin J, Tian G, et al. Review and analysis of powder prior boundary (PPB) formation in powder metallurgy processes for nickel-based super alloys [J]. J. Powder Metall. Min., 2015, 4: 1000127
5 Xu L, Tian X S, Wu J, et al. Hot isostatic densification of Inconel 718 powder alloy, and microstructure and mechanical properties [J]. Acta Metall. Sin., 2022, 59: 693
5 徐 磊, 田晓生, 吴 杰 等. Inconel 718粉末合金的热等静压成形和组织性能 [J]. 金属学报, 2022, 59: 693
6 Tian X S, Wu J, Lu Z G, et al. Effect of powder size segregation on the mechanical properties of hot isostatic pressing Inconel 718 alloys [J]. J. Mater. Res. Technol., 2022, 21: 84
7 Ning Y Q, Yao Z K, Guo H Z, et al. Investigation on hot deformation behavior of P/M Ni-base superalloy FGH96 by using processing maps [J]. Mater. Sci. Eng., 2010, A527: 6794
8 Ning Y Q, Fu M W, Yao W. Recrystallization of the hot isostatic pressed nickel-base superalloy FGH4096. II: Characterization and application [J]. Mater. Sci. Eng., 2012, A539: 101
9 Zhao F, Yao C G, Fan K C, et al. Prior particle boundary precipitation in powder metallurgy GH4169 [J]. Aerosp. Mater. Technol., 2012, 42(1): 92
9 赵 丰, 姚草根, 范开春 等. 粉末GH4169合金中的原始颗粒边界问题 [J]. 宇航材料工艺, 2012, 42(1): 92
10 Mao J, Yu K L, Zhou R F. Effect of pre-heat treatment on P/M René95 superalloy microstructure [J]. Powder Metall. Technol., 1989, 7: 213
10 毛 健, 俞克兰, 周瑞发. 粉末预热处理对HIP René95粉末高温合金组织的影响 [J]. 粉末冶金技术, 1989, 7: 213
11 Chang L T. Preparation and hot isostatic press compaction of superalloy powder with less ceramic inclusions [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2014
11 常立涛. 洁净高温合金粉末的制备及其热等静压工艺研究 [D]. 沈阳: 中国科学院金属研究所, 2014
12 Chang L T, Sun W R, Cui Y Y, et al. Preparation of hot-isostatic-pressed powder metallurgy superalloy Inconel 718 free of prior particle boundaries [J]. Mater. Sci. Eng., 2017, A682: 341
13 Rao G A, Srinivas M, Sarma D S. Effect of solution treatment temperature on microstructure and mechanical properties of hot isostatically pressed superalloy Inconel* 718 [J]. Mater. Sci. Technol., 2004, 20: 1161
14 Rao G A, Srinivas M, Sarma D S. Influence of modified processing on structure and properties of hot isostatically pressed superalloy Inconel 718 [J]. Mater. Sci. Eng., 2006, A418: 282
15 Wu J, Guo R P, Xu L, et al. Effect of hot isostatic pressing loading route on microstructure and mechanical properties of powder metallurgy Ti2AlNb alloys [J]. J. Mater. Sci. Technol., 2017, 33: 172
16 Xu L, Guo R P, Bai C G, et al. Effect of hot isostatic pressing conditions and cooling rate on microstructure and properties of Ti-6Al-4V alloy from atomized powder [J]. J. Mater. Sci. Technol., 2014, 30: 1289
doi: 10.1016/j.jmst.2014.04.011
17 Rao G A, Srinivas M, Sarma D S. Effect of thermomechanical working on the microstructure and mechanical properties of hot isostatically pressed superalloy Inconel 718 [J]. Mater. Sci. Eng., 2004, A383: 201
18 Arzt E, Ashby M F, Easterling K E. Practical applications of hotisostatic pressing diagrams: Four case studies [J]. Metall. Trans., 1983, 14A: 211
19 Li W B, Easterling K E. Cause and effect of non-uniform densification during hot isostatic pressing [J]. Powder Metall., 1992, 35: 47
20 Li W B, Ashby M F, Easterling K E. On densification and shape change during hot isostatic pressing [J]. Acta Metall., 1987, 35: 2831
21 Nair S V, Tien J K. Densification mechanism maps for hot isostatic pressing (HIP) of unequal sized particles [J]. Metall. Mater. Trans., 1987, 18A: 97
22 Zhang M D, Liu J T, Zhang Y W, et al. Relationship between prior particle boundary of powder metallurgy superalloy and solubility of MC carbides [J]. Trans. Mater. Heat Treat., 2021, 42(5): 50
22 张梦迪, 刘建涛, 张义文 等. 粉末高温合金原始颗粒边界与MC型碳化物溶解度的关系 [J]. 材料热处理学报, 2021, 42(5): 50
doi: 10.13289/j.issn.1009-6264.2020-0477
23 Hou J, Dong J X, Yao Z H, et al. Influences of PPB, PPB affect zone, grain boundary and phase boundary on crack propagation path for a P/M superalloy FGH4096 [J]. Mater. Sci. Eng., 2018, A724: 17
24 Cai C, Pan K K, Teng Q, et al. Simultaneously enhanced strength and ductility of FGH4097 nickel-based alloy via a novel hot isostatic pressing strategy [J]. Mater. Sci. Eng., 2019, A760: 19
25 Qiu C L, Attallah M M, Wu X H, et al. Influence of hot isostatic pressing temperature on microstructure and tensile properties of a nickel-based superalloy powder [J]. Mater. Sci. Eng., 2013, A564: 176
26 Tillmann W, Schaak C, Nellesen J, et al. Hot isostatic pressing of IN718 components manufactured by selective laser melting [J]. Addit. Manuf., 2017, 13: 93
27 Ye C W, Zhang X H, Wang L, et al. Effect of re-HIPing on microstructure of HIPed TC4 alloy [J]. Trans. Mater. Heat Treat., 2013, 34(6): 99
27 叶呈武, 张绪虎, 王 亮 等. 二次热等静压对TC4合金组织的影响 [J]. 材料热处理学报, 2013, 34(6): 99
28 Chang L T, Sun W R, Cui Y Y, et al. Influences of hot-isostatic-pressing temperature on microstructure, tensile properties and tensile fracture mode of Inconel 718 powder compact [J]. Mater. Sci. Eng., 2014, A599: 186
29 Teng Q, Wei Q S, Xue P J, et al. Effects of processing temperatures on FGH4097 superalloy fabricated by hot isostatic pressing: Microstructure evolution, mechanical properties and fracture mechanism [J]. Mater. Sci. Eng., 2019, A739: 118
30 Fayman Y C. Microstructural characterization and elemental partitioning in a direct-aged superalloy (DA 718) [J]. Mater. Sci. Eng., 1987, 92: 159
31 Rao G A, Kumar M, Srinivas M, et al. Effect of standard heat treatment on the microstructure and mechanical properties of hot isostatically pressed superalloy inconel 718 [J]. Mater. Sci. Eng., 2003, A355: 114
32 Pfaendtner J A, McMahon Jr C J. Oxygen-induced intergranular cracking of a Ni-base alloy at elevated temperatures—An example of dynamic embrittlement [J]. Acta Mater., 2001, 49: 3369
33 Krupp U. Dynamic embrittlement-time-dependent quasi-brittle intergranular fracture at high temperatures [J]. Int. Mater. Rev., 2005, 50: 83
[1] 张乾坤, 胡小锋, 姜海昌, 戎利建. Si对一种9Cr铁素体/马氏体钢显微组织和力学性能的影响[J]. 金属学报, 2024, 60(9): 1200-1212.
[2] 张星星, LUTZ Andreas, 甘为民, MAAWAD Emad, KRIELE Armin. 退火热处理对增材制造AlSi10Mg合金宏观和微观变形行为的影响[J]. 金属学报, 2024, 60(8): 1091-1099.
[3] 周牧, 王倩, 王延绪, 翟梓融, 何伦华, 李昺, 马英杰, 雷家峰, 杨锐. 焊前预处理对钛合金厚板焊接残余应力的影响[J]. 金属学报, 2024, 60(8): 1064-1078.
[4] 李亚微, 谢光, 柯于斌, 卢玉章, 黄亚奇, 张健. 小角中子散射原位研究镍基高温合金第二相析出演化行为[J]. 金属学报, 2024, 60(8): 1100-1108.
[5] 孟玉佳, 席通, 杨春光, 赵金龙, 张新蕊, 于英杰, 杨柯. Ga添加对304L不锈钢力学性能和抗菌性能的影响[J]. 金属学报, 2024, 60(7): 890-900.
[6] 陈诚, 杨光昱, 金梦辉, 王强, 汤鑫, 程会民, 介万奇. 铸型正反转搅动对精密铸造K4169合金凝固组织和室温力学性能的影响[J]. 金属学报, 2024, 60(7): 926-936.
[7] 张竟文, 余黎明, 刘晨曦, 丁然, 刘永长. Cr马氏体耐热钢的协同强化机制及形变热处理应用[J]. 金属学报, 2024, 60(6): 713-730.
[8] 许仁杰, 屠鑫, 胡斌, 罗海文. Cu-V双合金化3Mn钢的组织和力学性能[J]. 金属学报, 2024, 60(6): 817-825.
[9] 谢丽文, 张立龙, 刘艳艳, 张明阳, 王绍钢, 焦大, 刘增乾, 张哲峰. 不锈钢纤维增强镁基仿生复合材料制备与力学性能[J]. 金属学报, 2024, 60(6): 760-769.
[10] 王郑, 王振玉, 汪爱英, 杨巍, 柯培玲. 微弧氧化时间对锆合金表面MAO/Cr复合涂层结构与性能的影响[J]. 金属学报, 2024, 60(5): 691-698.
[11] 曾立, 王桂兰, 张海鸥, 翟文正, 张勇, 张明波. 电弧微铸锻复合增材制造GH4169D高温合金的显微组织与力学性能[J]. 金属学报, 2024, 60(5): 681-690.
[12] 汪建强, 刘威峰, 刘生, 徐斌, 孙明月, 李殿中. 700℃时效对9Cr ODS钢微观组织和力学性能的影响[J]. 金属学报, 2024, 60(5): 616-626.
[13] 余华, 李昕, 江河, 姚志浩, 董建新. 碳化物特征对GH3536合金冷变形损伤的影响及控制[J]. 金属学报, 2024, 60(4): 464-472.
[14] 张光莹, 李岩, 黄丽颖, 定巍. 连续屈服、高强屈比中锰钢的工艺设计与组织调控[J]. 金属学报, 2024, 60(4): 443-452.
[15] 江浩文, 彭伟, 范增为, 汪杨鑫, 刘腾轼, 董瀚. Ag对奥氏体不锈钢组织和力学性能的影响[J]. 金属学报, 2024, 60(4): 434-442.