Please wait a minute...
金属学报  2013, Vol. 29 Issue (4): 443-450    DOI: 10.3724/SP.J.1037.2012.00638
  论文 本期目录 | 过刊浏览 |
Zr-1Nb-0.7Sn-0.03Fe-xGe合金在360 ℃ LiOH水溶液中耐腐蚀性能的研究
张金龙1,2),谢兴飞1,2),姚美意1,2),周邦新1),彭剑超1,2),梁雪1,2)
1) 上海大学微结构重点实验室, 上海 200444
2) 上海大学材料研究所, 上海 200072
STUDY ON THE CORROSION RESISTANCE OF Zr-1Nb-0.7Sn-0.03Fe-xGe ALLOY IN LITHIATED WATER AT 360 ℃
ZHANG Jinlong1,2), XIE Xingfei1,2), YAO Meiyi1,2), ZHOU Bangxin1,2),PENG Jianchao 1,2),LIANG Xue1,2)
1) Laboratory for Microstructures, Shanghai University, Shanghai 200444
2) Institute of Materials, Shanghai University, Shanghai 200072
全文: PDF(4770 KB)  
摘要: 

对添加微量合金元素Ge的Zr-1Nb-0.7Sn-0.03Fe-xGe (x=0, 0.05, 0.1, 0.2, 质量分数, %) 合金在360 ℃, 18.6 MPa和0.01 mol/L LiOH水溶液中进行静态高压釜腐蚀实验. 利用TEM和SEM研究了合金和氧化膜的显微组织. 结果表明: 添加适量Ge可以显著提高Zr-1Nb-0.7Sn-0.03Fe合金在360 ℃, 18.6 MPa和0.01 mol/L LiOH水溶液中的耐腐蚀性能; 在Zr-1Nb-0.7Sn-0.03Fe-xGe合金中, 除了存在bcc结构的β-Nb型第二相和四方结构的Zr-Nb-Fe-Cr第二相, 还存在四方结构的Zr-Nb-Fe-Cr-Ge和四方结构的Zr3Ge型第二相; 这些第二相的氧化速率比α-Zr基体慢. 腐蚀190 d后, Zr-1Nb-0.7Sn-0.03Fe-0.1Ge合金氧化膜中微裂纹较少, 并且存在较多的Zr2O柱状晶; 添加Ge既可以有效延缓氧化膜中的缺陷形成微孔隙和微裂纹的过程, 又可以延迟Zr2O柱状晶向等轴晶的演化, 因而可以提高合金的耐腐蚀性能.

关键词 锆合金Ge耐腐蚀性能显微组织氧化膜    
Abstract

Zirconium alloys have low thermal neutron absorption cross-section, good corrosion resistance and adequate mechanical properties. They have been successfully developed as fuel cladding materials in pressurized water reactors. It's well known that the corrosion resistance of Zr-Sn-Nb alloys is significantly superior to that of Zircaloy-4 alloy when corroded in lithiated water. The corrosion resistance of zirconium alloys is controlled by their chemical compositions, characteristics of second phase particles (SPPs) and microstructure evolution of the oxide in them. The corrosion tests of Zr-1Nb-0.7Sn-0.03Fe-xGe (x=0, 0.05, 0.1, 0.2, mass fraction, %) alloys were investigated by means of an autoclave test in lithiated water with 0.01 mol/L LiOH at 360 ℃ under a pressure of 18.6 MPa. The microstructures of the alloys and oxide films on the corroded specimens were examed by using TEM and SEM. The sample for the oxide microstructure observation was prepared by a HELIOS-600I focused ion beam. The results reveal that the corrosion resistance of Zr-1Nb-0.7Sn-0.03Fe-xGe (x=0.05, 0.1, 0.2) alloys was remarkably superior to that of Zr-1Nb-0.7Sn-0.03Fe alloy.The corrosion resistance of Zr-1Nb-0.7Sn-0.03Fe alloys is markedly improved by the addition of (0.05%-0.2%)Ge. In addition to Zr-Nb-Fe-Cr SPPs with the tetragonal crystal structure (tet) and β-Nb SPPs with the bcc crystal structure, the Zr-Nb-Fe-Cr-Ge SPPs with the tet structure and Zr3Ge SPPs with the tet structure were detected out in Zr-1Nb-0.7Sn-0.03Fe-xGe alloys. The oxidation of SPPs was found to be slower than that of α-Zr matrix. There exist a few micro-cracks and more ZrO2 columnar grains in the oxide film formed on Zr-1Nb-0.7Sn-0.03Fe-0.1Ge alloys corroded for 190 d. However, more micro-cracks and ZrO2 equiaxed grains appear in the oxide film formed on Zr-1Nb-0.7Sn-0.03Fe alloys corroded for 130 d. Because the P. B. ratio of Ge is smaller than those of Zr, Nb, Fe and Cr, it is likely that the volume expansion of the oxide on Zr-1Nb-0.7Sn-0.03Fe-xGe (x=0.05, 0.1, 0.2) alloys is smaller than that on Zr-1Nb-0.7Sn-0.03Fe alloy, and the compressive stress can be reduced and the micro-cracks can be effectively decreased in the oxide on Zr-1Nb-0.7Sn-0.03Fe-xGe (x=0.05, 0.1, 0.2) alloys. The addition of Ge can not only delay the developing process of the defects in oxide films to form micro-pores and micro-cracks, but also retard the microstructural evolution from columnar grains to equiaxed grains. Therefore, it is concluded that the addition of Ge can improve the corrosion resistance of alloy.

Key wordszirconium alloy    Ge    corrosion resistance    microstructure    oxide film
收稿日期: 2012-10-25     
基金资助:

国家自然科学基金项目51171102和国家先进压水堆重大专项项目2011ZX06004-023资助

通讯作者: 张金龙     E-mail: jlzhang@shu.edu.cn
作者简介: 张金龙, 男, 1964年生, 副研究员

引用本文:

张金龙,谢兴飞,姚美意,周邦新,彭剑超,梁雪. Zr-1Nb-0.7Sn-0.03Fe-xGe合金在360 ℃ LiOH水溶液中耐腐蚀性能的研究[J]. 金属学报, 2013, 29(4): 443-450.
ZHANG Jinlong, XIE Xingfei, YAO Meiyi, ZHOU Bangxin, PENG Jianchao, LIANG Xue. STUDY ON THE CORROSION RESISTANCE OF Zr-1Nb-0.7Sn-0.03Fe-xGe ALLOY IN LITHIATED WATER AT 360 ℃. Acta Metall Sin, 2013, 29(4): 443-450.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2012.00638      或      https://www.ams.org.cn/CN/Y2013/V29/I4/443

[1] Comstock R J, Schoenberger G, Sable G P. In: Bradley E R, Sabol G P eds.,  Zirconium in the Nuclear Industry: 11th International Symposium, ASTM STP 1295, Ann Arbor: ASTM International, 1996: 710


[2] Sabol G P, Kilp G R, Balfour M G, Roberts E. In: Van Swam L F P, Eucken C M eds.,  Zirconium in the Nuclear Industry: 8th International Symposium, ASTM STP 1023, Baltimore: ASTM International, 1989: 227

[3] Nikulina A V, Markelov V A, Peregud M M, Bibilashvili Y K, Kotrekhov V A, Lositsky A F, Kuzmenko N V, Shevnin Y P, Shamardin V K, Kobylyansky G P, Novoselov A E. In: Sabol G P, Bradley E R eds.,  Zirconium in the Nuclear Industry: 11th International Symposium, ASTM STP 1295, Ann Arbor: ASTM International, 1996: 785

[4] Jung Y I, Lee M H, Kim H G, Park J Y, Jeong Y H.  J Alloy Compd, 2009; 479: 423

[5] Jeong Y H, Park S Y, Lee M H, Choi B K, Baek J H, Park J Y, Kim J H, Kim H G.  J Nucl Sci Technol, 2006; 43: 977

[6] Yang W D.  Reactor Materials Science. 2nd Ed., Beijing: Atomic Energy Press, 2006: 260

(杨文斗. 反应堆材料学. 第二版, 北京: 原子能出版社, 2006: 260)

[7] Liu J Z.  Structure Nuclear Materials. Beijing: Chemical Industry Press, 2007: 19

(刘建章. 核结构材料. 北京: 化学工业出版社, 2007: 19)

[8] Liu W Q, Zhu X Y, Wang X J, Li Q, Yao M Y, Zhou B X.  Atom Energ Sci Technol, 2010; 44: 1477

(刘文庆, 朱晓勇, 王晓娇, 李强, 姚美意, 周邦新. 原子能科学技术, 2010; 44: 1477)

[9] Kim J M, Jeong Y H, Kim I S.  J Nucl Mater, 2000; 280: 235

[10] Liu W Q, Li Q, Zhou B X, Yao M Y.  Nucl Power Eng, 2003; 24: 33

(刘文庆, 李强, 周邦新, 姚美意. 核动力工程, 2003; 24: 33)

[11] Wagner C J.  J Chem Phy, 1950; 18: 62

[12] Hauffe K.  Reactionen in und an Fasten Stoffen. Berlin: Springer, 1966: 1

[13] Xie X F, Zhang J L, Zhu L, Yao M Y, Zhou B X, Peng J C.  Acta Metall Sin, 2012; 48: 1487

(谢兴飞, 张金龙, 朱莉, 姚美意, 周邦新, 彭剑超. 金属学报, 2012; 48: 1487)

[14] Zhou B X, Li Q, Yao M Y, Liu W Q, Chu Y L. In: Kammenzind B, Limback M eds.,  Zirconium in the Nuclear Industry: 15th International Symposium, ASTM STP 1505, West Conshohochen: American Society for Testing and Materials, 2009: 360

[15] Charquet D, Hahn R, Ortlib E. In: Van Swam L F P, Eucken C M eds.,  Zircorium in the Nuclear Industry: 8th International Symposium, ASTM STP 1023, Philadelphia: ASTM International, 1989: 405

[16] Zhou B X, Li Q, Yao M Y, Liu W Q, Chu Y L.  Nucl Power Eng, 2005; 26: 364

(周邦新, 李强, 姚美意, 刘文庆, 褚玉良. 核动力工程, 2005; 26: 364)

[17] Anada H, Takeda K. In: Sabol G P, Bradley E R eds.,  Zircorium in the Nuclear Industry: 11th International Symposium, ASTM STP 1295, Ann Arbor: ASTM International, 1996: 35

[18] Wadman B, Lai Z, Andren H O, Nystrom A L, Rudling P, Pettersson H. In: Garde A M, Bradley E R eds., Zirconiumin in the Nuclear Industry: 10th International Symposium ASTM STP 1245, Ann Arbor: ASTM International, 1994: 579

[19] Zhou B X, Li Q, Liu W Q, Yao M Y, Chu Y L.  Rare Met Mater Eng, 2006; 35: 1009

(周邦新, 李强, 刘文庆, 姚美意, 褚于良. 稀有金属材料工程, 2006; 35: 1009)

[20] Park J Y, Yoo S J, Choi B K, Jeong Y H.  J Nucl Mater, 2007; 437: 274

[21] Kim H G, Choi B K, Park J Y.  J Alloy Compd, 2009; 481: 867

[22] Garzarolli F, Seidel H, Tricot R, Gros J P. In: Eucken C M, Garde A M eds.,  Zirconiumin in the Nuclear Industry: 9th International Symposium ASTM STP 1132, Baltimore: ASTM International, 1991: 395

[23] Park J Y, Choi B K, Jeong Y H, Jung Y H.  J Nucl Mater, 2005; 340: 237

[24] Liu Y Z, Park J Y, Kim H G, Jeong Y H.  Mater Chem Phys, 2010; 122: 408

[25] Yilmazbayhan A, Breval E, Motta A T, Comstock R J.  J Nucl Mater, 2006; 349: 265
[1] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[2] 李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
[3] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[4] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[5] 钱月,孙蓉蓉,张文怀,姚美意,张金龙,周邦新,仇云龙,杨健,成国光,董建新. NbFe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响[J]. 金属学报, 2020, 56(3): 321-332.
[6] 姚美意,张兴旺,侯可可,张金龙,胡鹏飞,彭剑超,周邦新. Zr-0.75Sn-0.35Fe-0.15Cr合金在250 ℃去离子水中的初期腐蚀行为[J]. 金属学报, 2020, 56(2): 221-230.
[7] 肖宏,许朋朋,祁梓宸,吴宗河,赵云鹏. 感应加热异温轧制制备钢/铝复合板[J]. 金属学报, 2020, 56(2): 231-239.
[8] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[9] 刘巧沐,黄顺洲,刘芳,杨艳,南宏强,张东,孙文儒. B含量对K417G合金凝固过程中组织演变和力学性能的影响[J]. 金属学报, 2019, 55(6): 720-728.
[10] 黄森森,马英杰,张仕林,齐敏,雷家峰,宗亚平,杨锐. α+β两相钛合金元素再分配行为及其对显微组织和力学性能的影响[J]. 金属学报, 2019, 55(6): 741-750.
[11] 蓝春波,梁家能,劳远侠,谭登峰,黄春艳,莫羡忠,庞锦英. 冷轧态Ti-35Nb-2Zr-0.3O合金的异常热膨胀行为[J]. 金属学报, 2019, 55(6): 701-708.
[12] 刘征,刘建荣,赵子博,王磊,王清江,杨锐. 电子束快速成形制备TC4合金的组织和拉伸性能分析[J]. 金属学报, 2019, 55(6): 692-700.
[13] 安同邦,魏金山,单际国,田志凌. 保护气成分对1000 MPa级高强熔敷金属组织特征的影响[J]. 金属学报, 2019, 55(5): 575-584.
[14] 任德春, 苏虎虎, 张慧博, 王健, 金伟, 杨锐. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响[J]. 金属学报, 2019, 55(4): 480-488.
[15] 覃嘉宇, 李小强, 金培鹏, 王金辉, 朱云鹏. 碳纳米管(CNTs)增强AZ91镁基复合材料组织与力学性能研究[J]. 金属学报, 2019, 55(12): 1537-1543.