Please wait a minute...
金属学报  2013, Vol. 29 Issue (4): 443-450    DOI: 10.3724/SP.J.1037.2012.00638
  论文 本期目录 | 过刊浏览 |
Zr-1Nb-0.7Sn-0.03Fe-xGe合金在360 ℃ LiOH水溶液中耐腐蚀性能的研究
张金龙1,2),谢兴飞1,2),姚美意1,2),周邦新1),彭剑超1,2),梁雪1,2)
1) 上海大学微结构重点实验室, 上海 200444
2) 上海大学材料研究所, 上海 200072
STUDY ON THE CORROSION RESISTANCE OF Zr-1Nb-0.7Sn-0.03Fe-xGe ALLOY IN LITHIATED WATER AT 360 ℃
ZHANG Jinlong1,2), XIE Xingfei1,2), YAO Meiyi1,2), ZHOU Bangxin1,2),PENG Jianchao 1,2),LIANG Xue1,2)
1) Laboratory for Microstructures, Shanghai University, Shanghai 200444
2) Institute of Materials, Shanghai University, Shanghai 200072
引用本文:

张金龙,谢兴飞,姚美意,周邦新,彭剑超,梁雪. Zr-1Nb-0.7Sn-0.03Fe-xGe合金在360 ℃ LiOH水溶液中耐腐蚀性能的研究[J]. 金属学报, 2013, 29(4): 443-450.
ZHANG Jinlong, XIE Xingfei, YAO Meiyi, ZHOU Bangxin, PENG Jianchao, LIANG Xue. STUDY ON THE CORROSION RESISTANCE OF Zr-1Nb-0.7Sn-0.03Fe-xGe ALLOY IN LITHIATED WATER AT 360 ℃[J]. Acta Metall Sin, 2013, 29(4): 443-450.

全文: PDF(4770 KB)  
摘要: 

对添加微量合金元素Ge的Zr-1Nb-0.7Sn-0.03Fe-xGe (x=0, 0.05, 0.1, 0.2, 质量分数, %) 合金在360 ℃, 18.6 MPa和0.01 mol/L LiOH水溶液中进行静态高压釜腐蚀实验. 利用TEM和SEM研究了合金和氧化膜的显微组织. 结果表明: 添加适量Ge可以显著提高Zr-1Nb-0.7Sn-0.03Fe合金在360 ℃, 18.6 MPa和0.01 mol/L LiOH水溶液中的耐腐蚀性能; 在Zr-1Nb-0.7Sn-0.03Fe-xGe合金中, 除了存在bcc结构的β-Nb型第二相和四方结构的Zr-Nb-Fe-Cr第二相, 还存在四方结构的Zr-Nb-Fe-Cr-Ge和四方结构的Zr3Ge型第二相; 这些第二相的氧化速率比α-Zr基体慢. 腐蚀190 d后, Zr-1Nb-0.7Sn-0.03Fe-0.1Ge合金氧化膜中微裂纹较少, 并且存在较多的Zr2O柱状晶; 添加Ge既可以有效延缓氧化膜中的缺陷形成微孔隙和微裂纹的过程, 又可以延迟Zr2O柱状晶向等轴晶的演化, 因而可以提高合金的耐腐蚀性能.

关键词 锆合金Ge耐腐蚀性能显微组织氧化膜    
Abstract

Zirconium alloys have low thermal neutron absorption cross-section, good corrosion resistance and adequate mechanical properties. They have been successfully developed as fuel cladding materials in pressurized water reactors. It's well known that the corrosion resistance of Zr-Sn-Nb alloys is significantly superior to that of Zircaloy-4 alloy when corroded in lithiated water. The corrosion resistance of zirconium alloys is controlled by their chemical compositions, characteristics of second phase particles (SPPs) and microstructure evolution of the oxide in them. The corrosion tests of Zr-1Nb-0.7Sn-0.03Fe-xGe (x=0, 0.05, 0.1, 0.2, mass fraction, %) alloys were investigated by means of an autoclave test in lithiated water with 0.01 mol/L LiOH at 360 ℃ under a pressure of 18.6 MPa. The microstructures of the alloys and oxide films on the corroded specimens were examed by using TEM and SEM. The sample for the oxide microstructure observation was prepared by a HELIOS-600I focused ion beam. The results reveal that the corrosion resistance of Zr-1Nb-0.7Sn-0.03Fe-xGe (x=0.05, 0.1, 0.2) alloys was remarkably superior to that of Zr-1Nb-0.7Sn-0.03Fe alloy.The corrosion resistance of Zr-1Nb-0.7Sn-0.03Fe alloys is markedly improved by the addition of (0.05%-0.2%)Ge. In addition to Zr-Nb-Fe-Cr SPPs with the tetragonal crystal structure (tet) and β-Nb SPPs with the bcc crystal structure, the Zr-Nb-Fe-Cr-Ge SPPs with the tet structure and Zr3Ge SPPs with the tet structure were detected out in Zr-1Nb-0.7Sn-0.03Fe-xGe alloys. The oxidation of SPPs was found to be slower than that of α-Zr matrix. There exist a few micro-cracks and more ZrO2 columnar grains in the oxide film formed on Zr-1Nb-0.7Sn-0.03Fe-0.1Ge alloys corroded for 190 d. However, more micro-cracks and ZrO2 equiaxed grains appear in the oxide film formed on Zr-1Nb-0.7Sn-0.03Fe alloys corroded for 130 d. Because the P. B. ratio of Ge is smaller than those of Zr, Nb, Fe and Cr, it is likely that the volume expansion of the oxide on Zr-1Nb-0.7Sn-0.03Fe-xGe (x=0.05, 0.1, 0.2) alloys is smaller than that on Zr-1Nb-0.7Sn-0.03Fe alloy, and the compressive stress can be reduced and the micro-cracks can be effectively decreased in the oxide on Zr-1Nb-0.7Sn-0.03Fe-xGe (x=0.05, 0.1, 0.2) alloys. The addition of Ge can not only delay the developing process of the defects in oxide films to form micro-pores and micro-cracks, but also retard the microstructural evolution from columnar grains to equiaxed grains. Therefore, it is concluded that the addition of Ge can improve the corrosion resistance of alloy.

Key wordszirconium alloy    Ge    corrosion resistance    microstructure    oxide film
收稿日期: 2012-10-25     
基金资助:

国家自然科学基金项目51171102和国家先进压水堆重大专项项目2011ZX06004-023资助

作者简介: 张金龙, 男, 1964年生, 副研究员

[1] Comstock R J, Schoenberger G, Sable G P. In: Bradley E R, Sabol G P eds.,  Zirconium in the Nuclear Industry: 11th International Symposium, ASTM STP 1295, Ann Arbor: ASTM International, 1996: 710


[2] Sabol G P, Kilp G R, Balfour M G, Roberts E. In: Van Swam L F P, Eucken C M eds.,  Zirconium in the Nuclear Industry: 8th International Symposium, ASTM STP 1023, Baltimore: ASTM International, 1989: 227

[3] Nikulina A V, Markelov V A, Peregud M M, Bibilashvili Y K, Kotrekhov V A, Lositsky A F, Kuzmenko N V, Shevnin Y P, Shamardin V K, Kobylyansky G P, Novoselov A E. In: Sabol G P, Bradley E R eds.,  Zirconium in the Nuclear Industry: 11th International Symposium, ASTM STP 1295, Ann Arbor: ASTM International, 1996: 785

[4] Jung Y I, Lee M H, Kim H G, Park J Y, Jeong Y H.  J Alloy Compd, 2009; 479: 423

[5] Jeong Y H, Park S Y, Lee M H, Choi B K, Baek J H, Park J Y, Kim J H, Kim H G.  J Nucl Sci Technol, 2006; 43: 977

[6] Yang W D.  Reactor Materials Science. 2nd Ed., Beijing: Atomic Energy Press, 2006: 260

(杨文斗. 反应堆材料学. 第二版, 北京: 原子能出版社, 2006: 260)

[7] Liu J Z.  Structure Nuclear Materials. Beijing: Chemical Industry Press, 2007: 19

(刘建章. 核结构材料. 北京: 化学工业出版社, 2007: 19)

[8] Liu W Q, Zhu X Y, Wang X J, Li Q, Yao M Y, Zhou B X.  Atom Energ Sci Technol, 2010; 44: 1477

(刘文庆, 朱晓勇, 王晓娇, 李强, 姚美意, 周邦新. 原子能科学技术, 2010; 44: 1477)

[9] Kim J M, Jeong Y H, Kim I S.  J Nucl Mater, 2000; 280: 235

[10] Liu W Q, Li Q, Zhou B X, Yao M Y.  Nucl Power Eng, 2003; 24: 33

(刘文庆, 李强, 周邦新, 姚美意. 核动力工程, 2003; 24: 33)

[11] Wagner C J.  J Chem Phy, 1950; 18: 62

[12] Hauffe K.  Reactionen in und an Fasten Stoffen. Berlin: Springer, 1966: 1

[13] Xie X F, Zhang J L, Zhu L, Yao M Y, Zhou B X, Peng J C.  Acta Metall Sin, 2012; 48: 1487

(谢兴飞, 张金龙, 朱莉, 姚美意, 周邦新, 彭剑超. 金属学报, 2012; 48: 1487)

[14] Zhou B X, Li Q, Yao M Y, Liu W Q, Chu Y L. In: Kammenzind B, Limback M eds.,  Zirconium in the Nuclear Industry: 15th International Symposium, ASTM STP 1505, West Conshohochen: American Society for Testing and Materials, 2009: 360

[15] Charquet D, Hahn R, Ortlib E. In: Van Swam L F P, Eucken C M eds.,  Zircorium in the Nuclear Industry: 8th International Symposium, ASTM STP 1023, Philadelphia: ASTM International, 1989: 405

[16] Zhou B X, Li Q, Yao M Y, Liu W Q, Chu Y L.  Nucl Power Eng, 2005; 26: 364

(周邦新, 李强, 姚美意, 刘文庆, 褚玉良. 核动力工程, 2005; 26: 364)

[17] Anada H, Takeda K. In: Sabol G P, Bradley E R eds.,  Zircorium in the Nuclear Industry: 11th International Symposium, ASTM STP 1295, Ann Arbor: ASTM International, 1996: 35

[18] Wadman B, Lai Z, Andren H O, Nystrom A L, Rudling P, Pettersson H. In: Garde A M, Bradley E R eds., Zirconiumin in the Nuclear Industry: 10th International Symposium ASTM STP 1245, Ann Arbor: ASTM International, 1994: 579

[19] Zhou B X, Li Q, Liu W Q, Yao M Y, Chu Y L.  Rare Met Mater Eng, 2006; 35: 1009

(周邦新, 李强, 刘文庆, 姚美意, 褚于良. 稀有金属材料工程, 2006; 35: 1009)

[20] Park J Y, Yoo S J, Choi B K, Jeong Y H.  J Nucl Mater, 2007; 437: 274

[21] Kim H G, Choi B K, Park J Y.  J Alloy Compd, 2009; 481: 867

[22] Garzarolli F, Seidel H, Tricot R, Gros J P. In: Eucken C M, Garde A M eds.,  Zirconiumin in the Nuclear Industry: 9th International Symposium ASTM STP 1132, Baltimore: ASTM International, 1991: 395

[23] Park J Y, Choi B K, Jeong Y H, Jung Y H.  J Nucl Mater, 2005; 340: 237

[24] Liu Y Z, Park J Y, Kim H G, Jeong Y H.  Mater Chem Phys, 2010; 122: 408

[25] Yilmazbayhan A, Breval E, Motta A T, Comstock R J.  J Nucl Mater, 2006; 349: 265
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[4] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[5] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[6] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[7] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[8] 刘来娣, 丁彪, 任维丽, 钟云波, 王晖, 王秋良. DZ445镍基高温合金高温长时间氧化形成的多层膜结构[J]. 金属学报, 2023, 59(3): 387-398.
[9] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[10] 廖京京, 张伟, 张君松, 吴军, 杨忠波, 彭倩, 邱绍宇. Zr-Sn-Nb-Fe-V合金在过热蒸汽中的周期性钝化-转折行为[J]. 金属学报, 2023, 59(2): 289-296.
[11] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[12] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[13] 徐文国, 郝文江, 李应举, 赵庆彬, 卢炳聿, 郭和一, 刘天宇, 冯小辉, 杨院生. 微量AlTiInconel 690合金高温氧化行为的影响[J]. 金属学报, 2023, 59(12): 1547-1558.
[14] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[15] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.