Please wait a minute...
金属学报  2013, Vol. 49 Issue (12): 1617-1622    DOI: 10.3724/SP.J.1037.2013.00303
  论文 本期目录 | 过刊浏览 |
超声辅助电镀法纳米叠层Ni镀膜的制备与性能
牛云松,魏杰,赵健,胡家秀,于志明
中国科学院金属研究所金属腐蚀与防护国家重点实验室, 沈阳 110016
PREPARATION AND PROPERTIES OF NANOSIZED MUL-TILAYERED Ni COATINGS BY ULTRASOUND-ASSISTED ELECTRODEPOSITION
NIU Yunsong, WEI Jie, ZHAO Jian, HU Jiaxiu, YU Zhiming
State Key Lab for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

牛云松,魏杰,赵健,胡家秀,于志明. 超声辅助电镀法纳米叠层Ni镀膜的制备与性能[J]. 金属学报, 2013, 49(12): 1617-1622.
NIU Yunsong, WEI Jie, ZHAO Jian, HU Jiaxiu, YU Zhiming. PREPARATION AND PROPERTIES OF NANOSIZED MUL-TILAYERED Ni COATINGS BY ULTRASOUND-ASSISTED ELECTRODEPOSITION[J]. Acta Metall Sin, 2013, 49(12): 1617-1622.

全文: PDF(1686 KB)  
摘要: 

采用超声辅助电镀法在Q235钢基体表面上制备了纳米叠层Ni镀膜.利用X射线衍射分析测定了镀膜的相结构和晶粒尺寸,在扫描电镜下观察了镀膜试样的剖面微观形貌,通过在室温7%HCl溶液中的浸泡实验考察了镀膜试样的耐腐蚀性能,采取磨轮磨损实验法对镀膜的耐磨性能进行了评价. 结果显示,纳米叠层Ni镀膜沿着最密排的(111)晶面择优取向生长, 其微结构明显呈平整层状重复堆积结构,普通电镀Ni镀膜的柱状晶垂直外延生长现象已被彻底消除. 与普通电镀Ni镀膜相比,纳米叠层Ni镀膜的耐磨性能不仅明显改善, 而且其耐腐蚀性能得到显著提高.

关键词 超声辅助电镀纳米叠层Ni镀膜耐磨性能耐腐蚀性能    
Abstract

Nanosized multilayered Ni coatings were deposited on Q235 steel substrates by ultrasound-assisted electrodeposition. The multilayered Ni coating has a laminated structure of ordinary Ni layer/ultrasonic Ni layer. In order to determine the corrosion and wear property of this novel multilayered Ni coating, conventional Ni coating and bilayered Ni coating were prepared. The phase structure and average grain size of the Ni coatings were determined by X—ray diffraction analysis. Cross section morphologies were observed by scanning electron microscope. Corrosion properties of the Ni coatings were investigated by the immersion test in 7%HCl solution at room temperature, and then their corrosion morphologies were examined by scanning electron microscope. Another way to evaluate the corrosion resistance of the Ni coatings is to calculate the porosity of the Ni coatings using porosity analysis software on an optical microscope. Wear resistance of the Ni coatings were evaluated by rubber wheel test method. The test condition was 400# SiC emery paper and the applied load on the samples is 6.3 N. Moreover, after 1500 cycles, cross sections of the worn Ni coating samples along the wear direction were observed by means of scanning electron microscope. The results indicate that the growth orientation of the multilayered Ni coating is (111) preferably. Its microstructure is obviously a smooth stacker--up laminated structure. Hence, the epitaxial columnar growth of the conventional Ni coating is annihilated by the formation of the multilayered structure. Compared with the conventional Ni coating, not only the wear resistance of the multilayered Ni coating is improved obviously, but also the corrosion resistance of the multilayered Ni coating is enhanced dramatically. With multilayered structure, the pinholes were obviously inhibited. That is because the multilayered Ni coating can cover the whole surface of the substrate without pinhole interruption. The multilayered structure can extend the pinhole passages extremely for the multilayered Ni coating, unlike the direct and straight pinhole passages for the conventional Ni coating. Therefore, its corrosion mechanism is the uniform corrosion, instead of the hydrogen blistering and Fe/Ni galvanic couples for the ordinary Ni coating. The wear mechanism of the multilayered Ni coating is the adhesive wear, which is a kind of the so-calledmicro-area detachment; while that of the ordinary Ni coating consists of adhesive wear, which can lead to the wear behavior of the bulk damage due to the columnar microstructure.

Key wordsultrasound-assisted electrodeposition    nanosized multilayered Ni coating    wear resistance    corrosion resistance
收稿日期: 2013-06-03     
基金资助:

国家高技术研究发展计划资助项目2009AA03Z103

作者简介: 牛云松, 男, 1984年生, 助理研究员

[1] Chen Y.  Practical Electrodeposition Technology. Beijing: National Defence Industrial Press, 2003: 147

(陈亚. 现代实用电镀技术. 北京: 国防工业出版社, 2003: 147)
[2] Iwasaki H, Higashi K, Nieh T G.  Scr Mater, 2004; 50: 395
[3] Chen L, Wang L P, Zeng Z X, Zhang J Y.  Mater Sci Eng, 2006; A434: 319
[4] Hamid Z A, Ghayad I M.  Mater Lett, 2002; 53: 238
[5] Erb U.  Nanostruct Mater, 1995; 6: 533
[6] Aruna S T, William G V K, Rajam K S.  J Alloys Compd, 2009; 468: 546
[7] He Y L.  Electroplating Finish, 2002; 21(2): 1
(何跃林. 电镀与涂饰, 2002; 21(2): 1)
[8] Cheung C, Djuanda F, Erb U, Palumbo G.  Nanostruct Mater, 1995; 5: 513
[9] Cheng D, Yan Z J, Yan L.  Acta Metall Sin, 2008; 44: 1461
(程东, 严志军, 严立. 金属学报, 2008; 44: 1461)
[10] Tayyebi M, Eghbali B.  Mater Sci Eng, 2013; A559: 759
[11] Menezes S, Anderson D P W.  J Electrochem Soc, 1990; 137: 440
[12] Rao S I, Hazzledine P M.  Philos Mag, 2000; 80A: 2011
[13] Rajasekaran N, Mohan S.  Corros Sci, 2009; 51: 2139
[14] Haseeb A S M A, Celis J P, Roos J R.  J Electrochem Soc, 1994; 141: 230
[15] Troyon M, Wang L.  Appl Surf Sci, 1996; 103: 517
[16] Wang Y, Deng Y Z, Ma Y T, Gao F.  Surf Coat Technol, 2011; 206: 1203
[17] Xie T T, Mao S D, Yu C, Wang S J, Song Z L.  Vacuum, 2012; 86: 1583
[18] Xia F F, Wu M H, Wang F, Jia Z Y, Wang A L.  Curr Appl Phys, 2009; 9(1): 44
[19] Zhu Y K, Yu Z M, Niu Y S, Ding W J.  J Adhesion Sci Technol, 2012; 26: 1645
[20] Xia F F, Liu C, Wang F, Wu M H, Wang J D, Fu H L, Wang J X.  J Alloys Compd, 2010; 490: 431
[21] Jensen J A D, Pocwiardowski P, Persson P O Å, Hultman L, Mφller P.Chem Phys Lett, 2003; 368: 732
[22] Lorimer J P, Pollet B, Phull S S, Mason T J, Walton D J, Geissler U.Electrochim Acta, 1996; 41: 2737
[23] Liu P S, Liang K M.  J Mater Sci, 2001; 36: 5059
[24] Chiu L H, Wu C H, Chang H.  Corrosion, 2007; 63: 127
[25] Mishra R, Balasubramaniam R.  Corros Sci, 2004; 46: 3019

[26] Cai J P, Lyon S B.  Corros Sci, 2005; 47: 2956

[1] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[2] 朱雯婷, 崔君军, 陈振业, 冯阳, 赵阳, 陈礼清. 690 MPa级高强韧低碳微合金建筑结构钢设计及性能[J]. 金属学报, 2021, 57(3): 340-352.
[3] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[4] 张煜, 娄丽艳, 徐庆龙, 李岩, 李长久, 李成新. 超高速激光熔覆镍基WC涂层的显微结构与耐磨性能[J]. 金属学报, 2020, 56(11): 1530-1540.
[5] 董虎林,包海萍,彭建洪. TiC含量对铁基复合材料力学性能及耐磨性能的影响[J]. 金属学报, 2019, 55(8): 1049-1057.
[6] 王垚,李春福,林元华. Cr对Fe-Cr合金耐蚀性能影响的电子理论研究[J]. 金属学报, 2017, 53(5): 622-630.
[7] 徐伟,路新,杜艳霞,孟庆宇,黎鸣,曲选辉. 粉末冶金制备Ti-Fe二元合金的耐腐蚀性能[J]. 金属学报, 2017, 53(1): 38-46.
[8] 何波,聂庆武,张洪宇,韦华. 固溶处理对CoCrW合金组织及耐磨性能的影响*[J]. 金属学报, 2016, 52(4): 484-490.
[9] 王波阳,周邦新,王桢,黄娇,姚美意,周军. Zr-0.72Sn-0.32Fe-0.14Cr-xNb合金在500 ℃过热蒸汽中的耐腐蚀性能*[J]. 金属学报, 2015, 51(12): 1545-1552.
[10] 许虹宇,黄陆军,耿林,张杰,黄玉东. Cu含量对Al2O3·SiO2sf/Al-Cu复合材料耐磨性能的影响[J]. 金属学报, 2013, 49(9): 1131-1136.
[11] 韦天国,龙冲生,苗志,刘云明,栾佰峰. Zr-0.4Fe-1.0Cr-x Mo合金在500℃和10.3 MPa水蒸汽中的腐蚀行为[J]. 金属学报, 2013, 49(6): 717-724.
[12] 张金龙,谢兴飞,姚美意,周邦新,彭剑超,梁雪. Zr-1Nb-0.7Sn-0.03Fe-xGe合金在360 ℃ LiOH水溶液中耐腐蚀性能的研究[J]. 金属学报, 2013, 29(4): 443-450.
[13] 朱莉,姚美意,孙国成,陈文觉,张金龙,周邦新. 添加Bi对Zr-1Nb合金在360 ℃和18.6 MPa去离子水中耐腐蚀性能的影响[J]. 金属学报, 2013, 49(1): 51-57.
[14] 姚美意 邹玲红 谢兴飞 张金龙 彭剑超 周邦新. 添加Bi对Zr-4合金在400 ℃/10.3 MPa过热蒸汽中耐腐蚀性能的影响[J]. 金属学报, 2012, 48(9): 1097-1102.
[15] 孙国成 周邦新 姚美意 谢世敬 李强. 锆合金在LiOH水溶液中腐蚀的各向异性研究[J]. 金属学报, 2012, 48(9): 1103-1108.