|
|
真空渗碳处理齿轮钢的氢脆敏感性 |
肖娜, 惠卫军( ), 张永健, 赵晓丽 |
北京交通大学 机械与电子控制工程学院 北京 100044 |
|
Hydrogen Embrittlement Behavior of a Vacuum-Carburized Gear Steel |
XIAO Na, HUI Weijun( ), ZHANG Yongjian, ZHAO Xiaoli |
School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China |
引用本文:
肖娜, 惠卫军, 张永健, 赵晓丽. 真空渗碳处理齿轮钢的氢脆敏感性[J]. 金属学报, 2021, 57(8): 977-988.
Na XIAO,
Weijun HUI,
Yongjian ZHANG,
Xiaoli ZHAO.
Hydrogen Embrittlement Behavior of a Vacuum-Carburized Gear Steel[J]. Acta Metall Sin, 2021, 57(8): 977-988.
1 |
Xiao N, Hui W J, Zhang Y J, et al. High cycle fatigue behavior of a low carbon alloy steel: The influence of vacuum carburizing treatment [J]. Eng. Fail. Anal., 2020, 109: 104215
|
2 |
Zhao M H, Han X C, Wang G, et al. Determination of the mechanical properties of surface-modified layer of 18CrNiMo7-6 steel alloys after carburizing heat treatment [J]. Int. J. Mech. Sci., 2018, 148: 84
|
3 |
Yan G W, Yu Q Z. Analysis of the delayed fracture of heavy-duty automobile gear [J]. J. Zhejiang Metall., 2017, (2): 38
|
3 |
严国卫, 余其中. 重载汽车齿轮延迟断裂原因分析 [J]. 浙江冶金, 2017, (2): 38
|
4 |
Jia H Y, Li Y L, Gong X Y, et al. Carburization and hydrogen embrittlement of 20CrMnMo steel center block [J]. Heat Treat. Met., 2002, 27(8): 57
|
4 |
贾厚雨, 李忆莲, 宫心勇等. 20CrMnMo钢中心楔块的渗碳与氢脆 [J]. 金属热处理, 2002, 27(8): 57
|
5 |
Xiao X, Long Y Q, Tan Z D. Hydrogen embrittlement in carburizing and its remedies [J]. Corros. Prot., 2000, 21: 469
|
5 |
肖 鑫, 龙有前, 谭正德. 渗碳齿轮氢脆及其解决方法 [J]. 腐蚀与防护, 2000, 21: 469
|
6 |
Straffelini G, Versari L. Brittle intergranular fracture of a thread: The role of a carburizing treatment [J]. Eng. Fail. Anal., 2009, 16: 1448
|
7 |
L'Hostis B, Minfray C, Frégonèse M, et al. Influence of lubricant formulation on rolling contact fatigue of gears-interaction of lubricant additives with fatigue cracks [J]. Wear, 2017, 382-383: 113
|
8 |
Kinami T. Carbo-nitrided steel with excellent rolling contact fatigue strength duo to hydrogen embrittlement [J]. Daiki Steel Mak., 2014, 85: 127
|
8 |
木南俊哉. 水素脆性型転動疲労強度に優れた浸炭窒化鋼 [J]. 電気製鋼, 2014, 85: 127
|
9 |
Li J X, Wang W, Zhou Y, et al. A review of research status of hydrogen embrittlement for automotive advanced high-strength steels [J]. Acta Metall. Sin., 2020, 56: 444
|
9 |
李金许, 王 伟, 周 耀等. 汽车用先进高强钢的氢脆研究进展 [J]. 金属学报, 2020, 56: 444
|
10 |
Dwivedi S K, Vishwakarma M. Hydrogen embrittlement in different materials: A review [J]. Int. J. Hydrogen Energy, 2018, 43: 21603
|
11 |
Zhang Y J, Hui W J, Zhao X L, et al. Effects of hot stamping and tempering on hydrogen embrittlement of a low-carbon boron-alloyed steel [J]. Materials, 2018, 11: 2507
|
12 |
Wang Y F, Hu S Y, Li Y, et al. Improved hydrogen embrittlement resistance after quenching-tempering treatment for a Cr-Mo-V high strength steel [J]. Int. J. Hydrogen Energy, 2019, 44: 29017
|
13 |
Li X F, Zhang J, Shen S C, et al. Effect of tempering temperature and inclusions on hydrogen-assisted fracture behaviors of a low alloy steel [J]. Mater. Sci. Eng., 2017, A682: 359
|
14 |
Zhang C L, Liu Y Z, Jiang C, et al. Effects of niobium and vanadium on hydrogen-induced delayed fracture in high strength spring steel [J]. J. Iron Steel Res. Int., 2011, 18: 49
|
15 |
Zhang Y J, Hui W J, Dong H. Hydrogen induced delayed fracture behavior of a low-carbon Mn-B type ultra-high strength steel sheet after hot stamping [J]. Acta Metall. Sin., 2013, 49: 1153
|
15 |
张永健, 惠卫军, 董 瀚. 一种低碳Mn-B系超高强度钢板热成形后的氢致延迟断裂行为 [J]. 金属学报, 2013, 49: 1153
|
16 |
Zhao X L, Zhang Y J, Shao C W, et al. Hydrogen embrittlement of intercritically annealed cold-rolled 0.1C-5Mn steel [J]. Acta Metall. Sin., 2018, 54: 1031
|
16 |
赵晓丽, 张永健, 邵成伟等. 两相区退火处理冷轧0.1C-5Mn中锰钢的氢脆敏感性 [J]. 金属学报, 2018, 54: 1031
|
17 |
Xiao N, Hui W J, Zhang Y J, et al. High-cycle fatigue behavior of vacuum-carburized 20Cr2Ni4 steel with different case depths [J]. J. Mater. Eng. Perform., 2019, 28: 3413
|
18 |
Bhadeshia H K D H. Prevention of hydrogen embrittlement in steels [J]. ISIJ Int., 2016, 56: 24
|
19 |
Jiang Y, Wu Q, Wang Y F, et al. Suppression of hydrogen absorption into 304L austenitic stainless steel by surface low temperature gas carburizing treatment [J]. Int. J. Hydrogen Energy, 2019, 44: 24054
|
20 |
Li Y, Li W, Zhu X, et al. Mechanism of improved hydrogen embrittlement resistance of low-temperature plasma carburised stainless steel [J]. Surf. Eng., 2018, 34: 189
|
21 |
Michler T. Influence of plasma nitriding on hydrogen environment embrittlement of 1.4301 austenitic stainless steel [J]. Surf. Coat. Technol., 2008, 202: 1688
|
22 |
Chu W Y, Qiao L J, Li J X, et al. Hydrogen Embrittlement and Stress Corrosion Cracking [M]. Beijing: Science Press, 2013: 94
|
22 |
褚武扬, 乔利杰, 李金许等. 氢脆和应力腐蚀 [M]. 北京: 科学出版社, 2013: 94
|
23 |
Zhang Y J, Hui W J, Zhao X L, et al. Effect of reverted austenite fraction on hydrogen embrittlement of TRIP-aided medium Mn steel (0.1C-5Mn) [J]. Eng. Fail. Anal., 2019, 97: 605
|
24 |
Carneiro Filho C J, Mansur M B, Modenesi P J, et al. The effect of hydrogen release at room temperature on the ductility of steel wire rods for pre-stressed concrete [J]. Mater. Sci. Eng., 2010, A527: 4947
|
25 |
Wang J J, Hui W J, Xie Z Q, et al. Hydrogen embrittlement of a cold-rolled Al-containing medium-Mn steel: Effect of pre-strain [J]. Int. J. Hydrogen Energy, 2020, 45: 22080
|
26 |
Hui W J, Zhang H X, Zhang Y J, et al. Effect of nickel on hydrogen embrittlement behavior of medium-carbon high strength steels [J]. Mater. Sci. Eng., 2016, A674: 615
|
27 |
Chiang J, Lawrence B, Boyd J D, et al. Effect of microstructure on retained austenite stability and work hardening of TRIP steels [J]. Mater. Sci. Eng., 2011, A528: 4516
|
28 |
Han J, Nam J H, Lee Y K. The mechanism of hydrogen embrittlement in intercritically annealed medium Mn TRIP steel [J]. Acta Mater., 2016, 113: 1
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|