Please wait a minute...
金属学报  2021, Vol. 57 Issue (8): 977-988    DOI: 10.11900/0412.1961.2020.00363
  研究论文 本期目录 | 过刊浏览 |
真空渗碳处理齿轮钢的氢脆敏感性
肖娜, 惠卫军(), 张永健, 赵晓丽
北京交通大学 机械与电子控制工程学院 北京 100044
Hydrogen Embrittlement Behavior of a Vacuum-Carburized Gear Steel
XIAO Na, HUI Weijun(), ZHANG Yongjian, ZHAO Xiaoli
School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China
引用本文:

肖娜, 惠卫军, 张永健, 赵晓丽. 真空渗碳处理齿轮钢的氢脆敏感性[J]. 金属学报, 2021, 57(8): 977-988.
Na XIAO, Weijun HUI, Yongjian ZHANG, Xiaoli ZHAO. Hydrogen Embrittlement Behavior of a Vacuum-Carburized Gear Steel[J]. Acta Metall Sin, 2021, 57(8): 977-988.

全文: PDF(18211 KB)   HTML
摘要: 

采用电化学充氢及慢应变速率拉伸(SSRT)实验研究了真空渗碳热处理后20Cr2Ni4A齿轮钢的氢脆敏感性,并与常规淬火+回火处理(QT)的20Cr2Ni4A齿轮钢进行了对比。结果表明,渗碳试样渗碳层中的残余奥氏体含量(约13.8%,体积分数,下同)远高于渗碳试样心部和QT试样(约4.6%),前者主要呈多尺度的块状分布在原奥氏体晶界及板条界处。渗碳试样与QT试样中的室温可扩散性H含量相当,但前者组织中较多的残余奥氏体和渗碳体含量使得其室温非扩散性H含量明显高于后者,H扩散系数明显低于后者。QT试样呈现出优异的强塑性配合,以相对断后伸长率损失表征的氢脆敏感性指数(HEI)为54.3%。与QT试样相比,渗碳试样的抗拉强度提高了34.6%,但塑性显著降低,断后伸长率及断面收缩率分别降低了66.5%和92.4%;充氢后在屈服之前就发生了脆性断裂,呈现出很高的氢脆敏感性,HEI高达90.9%。SSRT断口分析表明,充氢QT试样与最大H扩散距离大体相当的表层脆性区为沿晶+准解理的混合断裂,而充氢渗碳试样则在距表面一定距离的渗碳层内呈现一定宽度的沿晶断裂脆性区,且在接近有效渗碳层深度处出现了一条大体沿渗碳层圆周方向扩展的长裂纹。造成渗碳试样与QT试样氢脆敏感性显著差异和独特氢脆断裂特征的主要原因与2者的微观组织、强度水平及渗层残余压应力等因素有关。

关键词 氢脆齿轮钢真空渗碳微观组织力学性能    
Abstract

Carburized gear steel has a high-hardness case layer with excellent wear and fatigue resistance and a low-hardness core with high toughness. Such different microstructures imply different susceptibilities to hydrogen embrittlement (HE). However, a few or no studies have explored the HE behavior of carburized gear steel. Herein, the HE behavior of a vacuum-carburized gear steel 20Cr2Ni4A was investigated via an electrochemical hydrogen-charging and slow strain rate tensile test. For comparison, another group of specimens was prepared by a conventional quenched and tempered (QT) treatment. The volume fraction of retained austenite was significantly higher in the case layer of the carburized specimen (13.8%) than in the core and the QT specimen (4.6%). The retained austenite in the case layer showed a mainly irregular block-type morphology with wide size distribution. The room-temperature diffusible hydrogen content in the hydrogen-charged carburized specimen were almost identical to the QT specimen but the nondiffusible hydrogen content was significantly higher in the former than in the latter. Meanwhile, the hydrogen diffusion coefficient was notably lower in the hydrogen-charged carburized specimen than that in the QT sepcimen because the former retained higher fractions of austenite and cementite. The QT specimen exhibited superior strength and ductility. After hydrogen charging, the strength of the QT specimen remained almost unchanged but the total elongation notably decreased, causing the HE index (HEI), as evidenced using the relative total elongation loss, being 54.3%. Relative to the QT specimen, the carburized specimen achieved a higher tensile strength (increase by 34.6%) but a much lower ductility (total elongation and reduction of area reductions by 66.5% and 92.4%, respectively). The carburized specimen underwent premature brittle fracture before yielding, indicating susceptibility to HE. In fact, the HEI was as high as 90.9%. Mixed intergranular and quasi-cleavage fractures were observed in the surface embrittled region of the hydrogen-charged QT specimen. This region roughly corresponded to the maximum hydrogen diffusion distance. Meanwhile, the hydrogen-charged carburized specimen exhibited an embrittled internal-surface region with a certain width of intergranular fracture, and a long crack had propagated along the circumferential direction near the effective case depth. The microstructure, strength level, and residual stress are thought to mainly explain the abovementioned differences between the carburized and QT specimens.

Key wordshydrogen embrittlement    gear steel    vacuum-carburizing    microstructure    mechanical property
收稿日期: 2020-09-11     
ZTFLH:  TG142  
基金资助:国家安全重大基础研究计划项目(61328301)
作者简介: 肖 娜,女,1991年生,博士生
图1  未渗碳和渗碳试样的热处理工艺示意图
图2  QT试样和渗碳试样的微观组织OM像及XRD谱
图3  渗碳试样和QT试样的EBSD图及残余奥氏体尺寸分布
图4  QT试样及渗碳试样横截面上的硬度分布及渗碳试样横截面上的残余应力分布
图5  QT试样和渗碳试样充氢后的H含量随空气中放置时间的变化
图6  QT试样和渗碳试样充氢前后的SSRT拉伸曲线
SpecimenConditionσ / MPaA / %Z / %HEI / %
QTUncharged146216.462.254.3
Hydrogen-charged14667.533.0
CarburizedUncharged19685.54.790.9
Hydrogen-charged8120.50.0
表1  QT试样及渗碳试样的SSRT实验结果汇总
图7  QT试样充氢前后拉伸断口的SEM像
图8  渗碳试样未充氢时的SSRT断口SEM像(a) low magnification (b) crack initiation region (c) crack propagation region (d) fast fracture region
图9  渗碳试样充氢后的SSRT断口SEM像(a) low magnification(b) magnified view of the rectangle region in Fig.9a (c-f) magnified views of zones c-f in Fig.9b
图10  充氢渗碳试样经过SSRT实验后渗碳层EBSD图和残余奥氏体尺寸分布
图11  渗碳试样在拉伸过程中的应力分布模拟图(a) macroscopic specimen under tensile testing (b) fracture surface of specimen
图12  渗碳试样的氢脆断裂机理示意图(a) before SSRT (b) after SSRT (c) hydrogen rich and crack initiation and propagation
1 Xiao N, Hui W J, Zhang Y J, et al. High cycle fatigue behavior of a low carbon alloy steel: The influence of vacuum carburizing treatment [J]. Eng. Fail. Anal., 2020, 109: 104215
2 Zhao M H, Han X C, Wang G, et al. Determination of the mechanical properties of surface-modified layer of 18CrNiMo7-6 steel alloys after carburizing heat treatment [J]. Int. J. Mech. Sci., 2018, 148: 84
3 Yan G W, Yu Q Z. Analysis of the delayed fracture of heavy-duty automobile gear [J]. J. Zhejiang Metall., 2017, (2): 38
3 严国卫, 余其中. 重载汽车齿轮延迟断裂原因分析 [J]. 浙江冶金, 2017, (2): 38
4 Jia H Y, Li Y L, Gong X Y, et al. Carburization and hydrogen embrittlement of 20CrMnMo steel center block [J]. Heat Treat. Met., 2002, 27(8): 57
4 贾厚雨, 李忆莲, 宫心勇等. 20CrMnMo钢中心楔块的渗碳与氢脆 [J]. 金属热处理, 2002, 27(8): 57
5 Xiao X, Long Y Q, Tan Z D. Hydrogen embrittlement in carburizing and its remedies [J]. Corros. Prot., 2000, 21: 469
5 肖 鑫, 龙有前, 谭正德. 渗碳齿轮氢脆及其解决方法 [J]. 腐蚀与防护, 2000, 21: 469
6 Straffelini G, Versari L. Brittle intergranular fracture of a thread: The role of a carburizing treatment [J]. Eng. Fail. Anal., 2009, 16: 1448
7 L'Hostis B, Minfray C, Frégonèse M, et al. Influence of lubricant formulation on rolling contact fatigue of gears-interaction of lubricant additives with fatigue cracks [J]. Wear, 2017, 382-383: 113
8 Kinami T. Carbo-nitrided steel with excellent rolling contact fatigue strength duo to hydrogen embrittlement [J]. Daiki Steel Mak., 2014, 85: 127
8 木南俊哉. 水素脆性型転動疲労強度に優れた浸炭窒化鋼 [J]. 電気製鋼, 2014, 85: 127
9 Li J X, Wang W, Zhou Y, et al. A review of research status of hydrogen embrittlement for automotive advanced high-strength steels [J]. Acta Metall. Sin., 2020, 56: 444
9 李金许, 王 伟, 周 耀等. 汽车用先进高强钢的氢脆研究进展 [J]. 金属学报, 2020, 56: 444
10 Dwivedi S K, Vishwakarma M. Hydrogen embrittlement in different materials: A review [J]. Int. J. Hydrogen Energy, 2018, 43: 21603
11 Zhang Y J, Hui W J, Zhao X L, et al. Effects of hot stamping and tempering on hydrogen embrittlement of a low-carbon boron-alloyed steel [J]. Materials, 2018, 11: 2507
12 Wang Y F, Hu S Y, Li Y, et al. Improved hydrogen embrittlement resistance after quenching-tempering treatment for a Cr-Mo-V high strength steel [J]. Int. J. Hydrogen Energy, 2019, 44: 29017
13 Li X F, Zhang J, Shen S C, et al. Effect of tempering temperature and inclusions on hydrogen-assisted fracture behaviors of a low alloy steel [J]. Mater. Sci. Eng., 2017, A682: 359
14 Zhang C L, Liu Y Z, Jiang C, et al. Effects of niobium and vanadium on hydrogen-induced delayed fracture in high strength spring steel [J]. J. Iron Steel Res. Int., 2011, 18: 49
15 Zhang Y J, Hui W J, Dong H. Hydrogen induced delayed fracture behavior of a low-carbon Mn-B type ultra-high strength steel sheet after hot stamping [J]. Acta Metall. Sin., 2013, 49: 1153
15 张永健, 惠卫军, 董 瀚. 一种低碳Mn-B系超高强度钢板热成形后的氢致延迟断裂行为 [J]. 金属学报, 2013, 49: 1153
16 Zhao X L, Zhang Y J, Shao C W, et al. Hydrogen embrittlement of intercritically annealed cold-rolled 0.1C-5Mn steel [J]. Acta Metall. Sin., 2018, 54: 1031
16 赵晓丽, 张永健, 邵成伟等. 两相区退火处理冷轧0.1C-5Mn中锰钢的氢脆敏感性 [J]. 金属学报, 2018, 54: 1031
17 Xiao N, Hui W J, Zhang Y J, et al. High-cycle fatigue behavior of vacuum-carburized 20Cr2Ni4 steel with different case depths [J]. J. Mater. Eng. Perform., 2019, 28: 3413
18 Bhadeshia H K D H. Prevention of hydrogen embrittlement in steels [J]. ISIJ Int., 2016, 56: 24
19 Jiang Y, Wu Q, Wang Y F, et al. Suppression of hydrogen absorption into 304L austenitic stainless steel by surface low temperature gas carburizing treatment [J]. Int. J. Hydrogen Energy, 2019, 44: 24054
20 Li Y, Li W, Zhu X, et al. Mechanism of improved hydrogen embrittlement resistance of low-temperature plasma carburised stainless steel [J]. Surf. Eng., 2018, 34: 189
21 Michler T. Influence of plasma nitriding on hydrogen environment embrittlement of 1.4301 austenitic stainless steel [J]. Surf. Coat. Technol., 2008, 202: 1688
22 Chu W Y, Qiao L J, Li J X, et al. Hydrogen Embrittlement and Stress Corrosion Cracking [M]. Beijing: Science Press, 2013: 94
22 褚武扬, 乔利杰, 李金许等. 氢脆和应力腐蚀 [M]. 北京: 科学出版社, 2013: 94
23 Zhang Y J, Hui W J, Zhao X L, et al. Effect of reverted austenite fraction on hydrogen embrittlement of TRIP-aided medium Mn steel (0.1C-5Mn) [J]. Eng. Fail. Anal., 2019, 97: 605
24 Carneiro Filho C J, Mansur M B, Modenesi P J, et al. The effect of hydrogen release at room temperature on the ductility of steel wire rods for pre-stressed concrete [J]. Mater. Sci. Eng., 2010, A527: 4947
25 Wang J J, Hui W J, Xie Z Q, et al. Hydrogen embrittlement of a cold-rolled Al-containing medium-Mn steel: Effect of pre-strain [J]. Int. J. Hydrogen Energy, 2020, 45: 22080
26 Hui W J, Zhang H X, Zhang Y J, et al. Effect of nickel on hydrogen embrittlement behavior of medium-carbon high strength steels [J]. Mater. Sci. Eng., 2016, A674: 615
27 Chiang J, Lawrence B, Boyd J D, et al. Effect of microstructure on retained austenite stability and work hardening of TRIP steels [J]. Mater. Sci. Eng., 2011, A528: 4516
28 Han J, Nam J H, Lee Y K. The mechanism of hydrogen embrittlement in intercritically annealed medium Mn TRIP steel [J]. Acta Mater., 2016, 113: 1
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[6] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[13] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[14] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[15] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.