Please wait a minute...
金属学报  2021, Vol. 57 Issue (4): 553-558    DOI: 10.11900/0412.1961.2020.00379
  研究论文 本期目录 | 过刊浏览 |
非晶态Ni80P20合金的玻璃转变和过冷液体性质
杨群1, 彭思旭1,2, 卜庆周1, 于海滨1()
1.华中科技大学 国家脉冲强磁场科学中心和物理学院 武汉 430074
2.湖北大学 化学化工学院 武汉 430062
Revealing Glass Transition and Supercooled Liquid in Ni80P20 Metallic Glass
YANG Qun1, PENG Sixu1,2, BU Qingzhou1, YU Haibin1()
1.Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
2.School of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
引用本文:

杨群, 彭思旭, 卜庆周, 于海滨. 非晶态Ni80P20合金的玻璃转变和过冷液体性质[J]. 金属学报, 2021, 57(4): 553-558.
Qun YANG, Sixu PENG, Qingzhou BU, Haibin YU. Revealing Glass Transition and Supercooled Liquid in Ni80P20 Metallic Glass[J]. Acta Metall Sin, 2021, 57(4): 553-558.

全文: PDF(1567 KB)   HTML
摘要: 

镍磷(Ni80P20)金属玻璃是最典型和被研究最多的金属玻璃成分之一。然而,由于镍磷金属玻璃在加热过程中玻璃转变过程被晶化所阻断,到目前为止其过冷液体性质还没有被探测和表征。本工作通过具有高升温速率的超快量热仪,避免了Ni80P20金属玻璃在玻璃转变过程中的晶化,直接探测其整个玻璃转变过程和一定温度宽度的过冷液相区,为揭示其超冷液体性质提供了可能。通过超快量热测量,获得了Ni80P20金属玻璃在5个数量级升温速率变化下的相形成规律和液体脆度,它的超冷液体展现出比大部分块体金属玻璃更“脆”的一种液体行为,这种“脆”性液体行为可能导致其差的玻璃形成能力。

关键词 金属玻璃超快量热超冷液体脆度玻璃形成能力    
Abstract

Nickel-phosphorus metallic glass (MG) is one of the most typical MGs, and is also one of the most popular studied MG components, especially in the process of establishing the structure model of amorphous alloys and computer simulations. Although it appears throughout the history of amorphous alloy research, its glass transition temperature and liquid properties have not yet been determined due to its low ability to form glass. In this work, we bypassed the crystallization of Ni80P20 MG during the glass transition process by an ultrafast calorimeter with heating rates up to thousands of Kelvin per second and directly detected its glass transition process. This method offers an opportunity to expose the nature of the Ni80P20 MG supercooled liquid. The liquid fragility of the metallic glass Ni80P20 was determined by the Vogel-Fulcher-Tammann equation based on the dependence of the glass transition temperature at different heating rates. The results show that the liquid fragility of Ni80P20 MG is 93 ± 4, which is obviously a very “fragile” liquid compared with other bulk MGs. It is suggested that this “fragile” liquid behavior of Ni80P20 MG may lead to its low glass-forming ability.

Key wordsmetallic glass    ultrafast scanning calorimetry    supercooled liquid    fragility    glass forming ability
收稿日期: 2020-09-21     
ZTFLH:  TG139  
基金资助:中央高校基本科研业务费专项资金项目(2018KFYXKJC009)
作者简介: 杨群,男,1994年生,博士生
图1  Ni80P20金属玻璃条带的XRD谱,及Ni80P20金属玻璃分别在高升温速率下的FSC和低升温速率下的DSC热流曲线
图2  Ni80P20金属玻璃在不同升温速率下的FSC热流曲线及Ni80P20金属玻璃在不同升温速率下的相图
图3  Ni80P20金属玻璃分别在DSC和FSC的升温速率范围内的晶化Kissinger图,及不同升温速率下的玻璃转变温度的变化与VFT方程拟合
图4  升温速率为700 K/s时,通过高温传感器测量的Ni80P20金属玻璃的比热曲线及熔化热流曲线
图5  金属玻璃的液体脆度和玻璃形成能力之间的非线性关系
1 Zeng Q S, Sheng H W, Ding Y, et al. Long-range topological order in metallic glass [J]. Science, 2011, 332: 1404
2 Wang W H, Dong C, Shek C H. Bulk metallic glasses [J]. Mater. Sci. Eng., 2004, R44: 45
3 Schroers J. Bulk metallic glasses [J]. Phys. Today, 2013, 66: 32
4 Sheng H W, Luo W K, Alamgir F M, et al. Atomic packing and short-to-medium-range order in metallic glasses [J]. Nature, 2006, 439: 419
5 Ma E. Tuning order in disorder [J]. Nat. Mater., 2015, 14: 547
6 Wang W H. The nature and properties of amorphous matter [J]. Prog. Phys., 2013, 33: 177
6 汪卫华. 非晶态物质的本质和特性 [J]. 物理学进展, 2013, 33: 177
7 Hirata A, Guan P F, Fujita T, et al. Direct observation of local atomic order in a metallic glass [J]. Nat. Mater., 2011, 10: 28
8 Cheng Y Q, Ma E. Atomic-level structure and structure-property relationship in metallic glasses [J]. Prog. Mater. Sci., 2011, 56: 379
9 Kumar G, Desai A, Schroers J. Bulk metallic glass: The smaller the better [J]. Adv. Mater., 2011, 23: 461
10 Johnson W L. Bulk glass-forming metallic alloys: Science and technology [J]. MRS Bull., 1999, 24: 42
11 Suryanarayana C, Inoue A. Iron-based bulk metallic glasses [J]. Int. Mater. Rev., 2013, 58: 131
12 Wang W H. Bulk metallic glasses with functional physical properties [J]. Adv. Mater., 2009, 21: 4524
13 Wang W H, Dong C, Shek C H. Bulk metallic glasses [J]. Mater. Sci. Eng., 2004, R44: 45
14 Greer A L. Metallic glasses...on the threshold [J]. Mater. Today, 2009, 12: 14
15 Johnson W L. Bulk glass-forming metallic alloys: Science and technology [J]. MRS Bull., 1999, 24: 42
16 Schuh C A, Hufnagel T C, Ramamurty U. Mechanical behavior of amorphous alloys [J]. Acta Mater., 2007, 55: 4067
17 Li H X, Lu Z C, Wang S L, et al. Fe-based bulk metallic glasses: Glass formation, fabrication, properties and applications [J]. Prog. Mater. Sci., 2019, 103: 235
18 Lu Z P, Lei Z F, Huang H L, et al. Deformation behavior and toughening of high-entropy alloys [J]. Acta Metall. Sin., 2018, 54: 1553
18 吕昭平, 雷智峰, 黄海龙等. 高熵合金的变形行为及强韧化 [J]. 金属学报, 2018, 54: 1553
19 Wang W H, Luo P. The dynamic behavior hidden in the long time scale of metallic glasses and its effect on the properties [J]. Acta Metall. Sin., 2018, 54: 1479
19 汪卫华, 罗 鹏. 金属玻璃中隐藏在长时间尺度下的动力学行为及其对性能的影响 [J]. 金属学报, 2018, 54: 1479
20 Jiang Q K, Wang X D, Nie X P, et al. Zr-(Cu, Ag)-Al bulk metallic glasses [J]. Acta Mater., 2008, 56: 1785
21 Jiang J Z, Hofmann D, Jarvis D J, et al. Low-density high-strength bulk metallic glasses and their composites: A review [J]. Adv. Eng. Mater., 2015, 17: 761
22 Luborsky F E. Amorphous Metal Alloys [M]. Beijing: Metallurgic Industry Press, 1989: 58
22 卢博斯基 F E. 非晶态金属合金 [M]. 北京: 冶金工业出版社, 1989: 58
23 Brenner A, Couch D E, Williams E K. Electrodeposition of alloys of phosphorus with nickel or cobalt [J]. J. Res. Natl. Bur. Stand., 1950, 44: 109
24 Cargill G S III. Structural investigation of noncrystalline nickel-phosphorus alloys [J]. J. Appl. Phys., 1970, 41: 12
25 Yu H B, Richert R, Samwer K. Structural rearrangements governing Johari-Goldstein relaxations in metallic glasses [J]. Sci. Adv., 2017, 3: e1701577
26 Yu H B, Yang M H, Sun Y, et al. Fundamental link between β relaxation, excess wings, and cage-breaking in metallic glasses [J]. J. Phys. Chem. Lett., 2018, 9: 5877
27 Zhou Z Y, Peng H L, Yu H B. Structural origin for vibration-induced accelerated aging and rejuvenation in metallic glasses [J]. J. Chem. Phys., 2019, 150: 204507
28 Yu H B, Richert R, Maaβ R, et al. Unified criterion for temperature-induced and strain-driven glass transitions in metallic glass [J]. Phys. Rev. Lett., 2015, 115: 135701
29 Angell C A. Formation of glasses from liquids and biopolymers [J]. Science, 1995, 267: 1924
30 Johnson W L, Na J H, Demetriou M D. Quantifying the origin of metallic glass formation [J]. Nat. Commun., 2016, 7: 10313
31 Senkov O N. Correlation between fragility and glass-forming ability of metallic alloys [J]. Phys. Rev., 2007, 76B: 104202
32 Yang Q, Huang J, Qin X H, et al. Revealing hidden supercooled liquid states in Al-based metallic glasses by ultrafast scanning calorimetry: Approaching theoretical ceiling of liquid fragility [J]. Sci. China Mater., 2020, 63: 157
33 Gangopadhyay A K, Pueblo C E, Kelton K F. Link between volume, thermal expansion, and bulk metallic glass formability [J]. Phys. Rev. Mater., 2020, 4: 095602
34 Wang L M, Tian Y J, Liu R P, et al. A “universal” criterion for metallic glass formation [J]. Appl. Phys. Lett., 2012, 100: 261913
35 Zheng H J, Hu L, Zhao X, et al. Poor glass-forming ability of Fe-based alloys: Its origin in high-temperature melt dynamics [J]. J. Non-Cryst. Solids, 2017, 471: 120
36 Bian X F, Sun B A, Hu L N, et al. Fragility of superheated melts and glass-forming ability in Al-based alloys [J]. Phys. Lett., 2005, 335A: 61
37 Zheng Q J, Zhang Y F, Montazerian M, et al. Understanding glass through differential scanning calorimetry [J]. Chem. Rev., 2019, 119: 7848
38 Zhao Y, Zhang B. Evaluating the correlation between liquid fragility and glass-forming ability in the extremely strong Ce-based bulk metallic glasses [J]. J. Appl. Phys., 2017, 122: 115107
39 Brüning R, Samwer K. Glass transition on long time scales [J]. Phys. Rev., 1992, 46B: 11318
40 Böhmer R, Ngai K L, Angell C A, et al. Nonexponential relaxations in strong and fragile glass formers [J]. J. Chem. Phys., 1993, 99: 4201
41 Jia R, Bian X F, Wang Y Y. Thermodynamic determination of fragility in La-based glass-forming liquid [J]. Chin. Sci. Bull., 2011, 56: 3912
42 Wang L M, Angell C A, Richert R. Fragility and thermodynamics in nonpolymeric glass-forming liquids [J]. J. Chem. Phys., 2006, 125: 074505
[1] 刘帅帅, 侯超楠, 王恩刚, 贾鹏. Zr61Cu25Al12Ti2Zr52.5Cu17.9Ni14.6Al10Ti5 块体非晶合金过冷液相区的塑性流变行为[J]. 金属学报, 2022, 58(6): 807-815.
[2] 孙小钧, 何杰, 陈斌, 赵九洲, 江鸿翔, 张丽丽, 郝红日. Fe含量对Zr60Cu40-xFex相分离非晶合金组织结构、电阻性能和纳米压痕行为的影响[J]. 金属学报, 2021, 57(5): 675-683.
[3] 蒋敏强, 高洋. 金属玻璃的结构年轻化及其对力学行为的影响[J]. 金属学报, 2021, 57(4): 425-438.
[4] 屈瑞涛, 王晓地, 吴少杰, 张哲峰. 金属玻璃的剪切带变形与断裂机制研究进展[J]. 金属学报, 2021, 57(4): 453-472.
[5] 曾桥石, 尹梓梁, 楼鸿波. 金属玻璃中的非晶多形态转变[J]. 金属学报, 2021, 57(4): 491-500.
[6] 张倪侦, 马昕迪, 耿川, 穆永坤, 孙康, 贾延东, 黄波, 王刚. Ag元素添加对Cu-Zr-Al基金属玻璃纳米压痕行为的影响[J]. 金属学报, 2021, 57(4): 567-574.
[7] 管鹏飞, 孙胜君. 金属玻璃结构及其失稳的原子层次研究[J]. 金属学报, 2021, 57(4): 501-514.
[8] 曹庆平, 吕林波, 王晓东, 蒋建中. 物理气相沉积制备金属玻璃薄膜及其力学性能的样品尺寸效应[J]. 金属学报, 2021, 57(4): 473-490.
[9] 黄火根, 张鹏国, 张培, 王勤国. U-CoU-Fe基础体系非晶形成能力的比较[J]. 金属学报, 2020, 56(6): 849-854.
[10] 赵燕春, 孙浩, 李春玲, 蒋建龙, 毛瑞鹏, 寇生中, 李春燕. 高强韧Ti-Ni基块体金属玻璃复合材料高温变形行为[J]. 金属学报, 2018, 54(12): 1818-1824.
[11] 汪卫华, 罗鹏. 金属玻璃中隐藏在长时间尺度下的动力学行为及其对性能的影响[J]. 金属学报, 2018, 54(11): 1479-1489.
[12] 张哲峰, 屈瑞涛, 刘增乾. 金属玻璃的断裂行为与强度理论研究进展*[J]. 金属学报, 2016, 52(10): 1171-1182.
[13] 沈勇,徐坚. Zr46.9Cu45.5Al5.6Y2.0金属玻璃含B2-CuZr相内生复合材料的制备及其力学性能*[J]. 金属学报, 2015, 51(11): 1407-1415.
[14] 朱振东,徐坚. Cu56Hf27Ti17块体金属玻璃的缺口韧性[J]. 金属学报, 2013, 49(8): 969-975.
[15] 高度,陈光,范沧. 熔体保温温度对Wf/Zr基金属玻璃复合材料室温力学性能的影响[J]. 金属学报, 2013, 49(11): 1481-1486.