Please wait a minute...
金属学报  2021, Vol. 57 Issue (4): 453-472    DOI: 10.11900/0412.1961.2020.00428
  综述 本期目录 | 过刊浏览 |
金属玻璃的剪切带变形与断裂机制研究进展
屈瑞涛1,2(), 王晓地1, 吴少杰1, 张哲峰1()
1.中国科学院金属研究所 沈阳 110016
2.西北工业大学 材料学院 西安 710072
Research Progress in Shear Banding Deformation and Fracture Mechanisms of Metallic Glasses
QU Ruitao1,2(), WANG Xiaodi1, WU Shaojie1, ZHANG Zhefeng1()
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
引用本文:

屈瑞涛, 王晓地, 吴少杰, 张哲峰. 金属玻璃的剪切带变形与断裂机制研究进展[J]. 金属学报, 2021, 57(4): 453-472.
Ruitao QU, Xiaodi WANG, Shaojie WU, Zhefeng ZHANG. Research Progress in Shear Banding Deformation and Fracture Mechanisms of Metallic Glasses[J]. Acta Metall Sin, 2021, 57(4): 453-472.

全文: PDF(3850 KB)   HTML
摘要: 

金属玻璃的室温塑性变形一般高度局域于剪切带中,因此剪切带行为主导着金属玻璃的变形与断裂机制,对力学性能(如强度、塑性、韧性及疲劳性能等)有重要影响。鉴于剪切带行为对理解和改善金属玻璃力学性能的极端重要性,长期以来关于剪切带的研究一直是金属玻璃领域的热点之一。本文基于作者近年来在剪切带变形与断裂机制上的研究结果,阐述金属玻璃在静态和循环载荷下剪切带的扩展、开裂与失稳断裂机制,强调缺口等外在缺陷对剪切带的作用,提出调控金属玻璃力学性能的“缺陷工程”策略。

关键词 金属玻璃剪切带裂纹缺口尺寸效应    
Abstract

Plastic deformation of metallic glasses (MGs) at room temperature usually localizes into shear bands. The shear banding behavior dominates the deformation and fracture mechanisms of MGs and affects their mechanical properties (e.g., strength, plasticity, fracture toughness, fatigue properties, etc.). The shear banding behavior is of vital importance for understanding and improving mechanical properties of MGs; therefore, studies on shear bands have been long-standing hot topics in the MG field. In this paper, based on the previous studies of shear banding behaviors in various MGs, the mechanisms of shear band propagation, cracking, and unstable fracture under monotonic and cyclic loadings are elucidated. The experimental evidence of progressive shear band propagation under uniaxial loading is provided and the mechanisms of shear band cracking under compression are revealed. It is found that the “cold” fracture of shear band can occur when reducing sample size, adding external confinement, or decreasing the testing temperature to stabilize the shear band propagation. Under cyclic loading, the shear-band-mediated fatigue crack initiation and cracking mechanisms are confirmed. Furthermore, the fragmentation in brittle MGs under compression should be caused by split cracking from defects. The effect of sample size on competition between shearing and splitting for brittle MGs is also discussed. Finally, the significant role of external defects (e.g., notches) on shear banding behavior is described and a “defect engineering” strategy for tailoring the mechanical properties of MGs is proposed.

Key wordsmetallic glass    shear band    crack    notch    size effect
收稿日期: 2020-10-27     
ZTFLH:  TG139.8  
基金资助:国家自然科学基金项目(51771205);辽宁省自然科学基金项目(2020-MS-011);辽宁省“兴辽英才”项目
图1  局部剪切位移在剪切带中的分布[36](a) before macroscopic yielding(b) after macroscopic yielding
图2  钛基金属玻璃的工程应力-工程应变曲线在宏观屈服附近的局部放大图[36]
图3  压缩下剪切带形成及渐进扩展时的表观硬化机理示意图[36](a1) compressed sample with a stress concentration, where a shear band will be nucleated(a2) local shearing of shear transformation zones (STZs) near the stress concentration(a3) stress distribution along the shear direction of Ox(b1) compressed sample after the first shear with a short shear band (OA)(b2) contraction and traction of local atoms/clusters around the origin of shear banding(b3-b5) distributions of contraction and traction stresses, shear stress, and local shear offset along the shear direction of Ox, respectively(c1) successive shearing of the compressed sample, creating the grown shear band with length of OB
图4  钛基金属玻璃在三点弯曲原位加载时的变形行为[50](a) magnified flexural stress-displacement curve(b) size of shear band zone as a function of deflection (c-e) evolutions of deformation morphologies
图5  锆基金属玻璃压缩下的剪切带开裂行为观察[58](a) scanning electron microscopy (SEM) image on the surface morphology(b) X-ray tomography (XRT) image on the longitudinal slice(c) 3D morphology of cracks inside the shear band
图6  剪切带在压缩下的开裂机制示意图[58]
  图7受限及未受限压缩发生剪切断裂时的断裂形貌对比[71](a, b) shear fracture and melting of the coated-tin near the fracture surface for the unconfined sample(c, d, f, g) considerable shear offset and no-melting of the coated-tin near the fracture surface for the confined sample(e) XRT imaging on the confined sample, indicating that the most area of the major shear band has already fractured(h) fracture surface of the confined sample showing no sign of vein pattern
图8  小尺寸样品Vit-105金属玻璃压缩工程应力-应变曲线及变形断裂形貌[70](a) engineering stress-strain curve (b-e) deformation features and shear band cracking observed with SEM and XRT, respectively (f, g) fracture surfaces showing smooth frictional morphologies without veins
图9  钛基金属玻璃低温渐进开裂行为及解释[51](a) typical compressive stress-strain curve at 198 K and the definitions of the rupture stress (σr) and the area fraction of vein pattern region (fv) (Inset shows the illustration of a typical fracture surface. Asb, As, and Av are areas of the overall shear fracture surface, the smooth region, and the vein pattern region, respectively; Af1 and Af2 are the areas of the two regions with frictional morphology)(b) relationship between σr and fv (c, d) XRT images of interrupted compressive samples (e) variation of the true rupture stress (σtr) with testing temperature (θ is the shear fracture angle)
图10  在不同加载周数下剪切带局部剪切位移(λ)和不同位置(δ)的关系[88]
图11  金属玻璃循环压缩过程中剪切带演化及疲劳裂纹长度随加载周次增加的变化关系[96]
图12  高强度钴基金属玻璃在压缩下开裂行为观察及破碎机制示意图[102](a) SEM observation on the sample surface showing splitting cracks and a shear band(b, c) XRT observations on the splitting cracks inside the sample(d-g) illustrations of fragmentation mechanism showing the formation and linkage of splitting cracks which originated from extrinsic defects
图13  钴基金属玻璃含缺陷样品的名义压缩强度随孔洞半径的变化关系[102]
图14  金属玻璃的缺口拉伸变形断裂形貌及其缺口强度比与其他合金的对比[19]
图15  TiZr基金属玻璃与CM400超高强钢的拉伸、压缩与缺口疲劳行为对比[20](a) tensile and compressive engineering stress-strain curves of TiZr-MG and CM400 UHSS(b, c) stress-life (S-N) fatigue data for the notched MG and UHSS (Data are presented in terms of the reversal cycles to failure (2Nf), as a function of the applied stress amplitude (σa = (σmax - σmin) / 2) and the applied stress amplitude normalized by the ultimate tensile strength (σa / σUTS), respectively. σmax—the maximum cyclic stress, σmin—the minimum cyclic stress, b—the fatigue exponent, σf'—the fatigue coefficient)(d, e) surface damage features near the fatigue crack in the notched UHSS and MG
图16  金属玻璃“缺陷工程”应用实例之一:通过快速缺陷印刷处理改善宏观拉伸塑性[132](a) illustration of the RDP process(b) sample surface of the fractured MG without RDP treatment (c-f) deformation features of the fractured MG with RDP treatment (g, h) engineering stress-strain curves of MGs with and without RDP treatment
1 Wang W H. The nature and properties of amorphous matter [J]. Prog. Phys., 2013, 33: 177
1 汪卫华. 非晶态物质的本质和特性 [J]. 物理学进展, 2013, 33: 177
2 Schuh C A, Hufnagel T C, Ramamurty U. Mechanical behavior of amorphous alloys [J]. Acta Mater., 2007, 55: 4067
3 Steif P S, Spaepen F, Hutchinson J W. Strain localization in amorphous metals [J]. Acta Metall., 1982, 30: 447
4 Greer A L, Cheng Y Q, Ma E. Shear bands in metallic glasses [J]. Mater. Sci. Eng., 2013, R74: 71
5 Zhang Z F, Qu R T, Liu Z Q. Advances in fracture behavior and strength theory of metallic glasses [J]. Acta Metall. Sin., 2016, 52: 1171
5 张哲峰, 屈瑞涛, 刘增乾. 金属玻璃的断裂行为与强度理论研究进展 [J]. 金属学报, 2016, 52: 1171
6 Gan K F, Jiang S S, Huang Y J, et al. Elucidating how correlated operation of shear transformation zones leads to shear localization and fracture in metallic glasses: Tensile tests on Cu-Zr based metallic-glass microwires, molecular dynamics simulations, and modelling [J]. Int. J. Plast., 2019, 119: 1
7 Maaß R, Samwer K, Arnold W, et al. A single shear band in a metallic glass: Local core and wide soft zone [J]. Appl. Phys. Lett., 2014, 105: 171902
8 Pan J, Chen Q, Liu L, et al. Softening and dilatation in a single shear band [J]. Acta Mater., 2011, 59: 5146
9 Zhang Y, Greer A L. Thickness of shear bands in metallic glasses [J]. Appl. Phys. Lett., 2006, 89: 071907
10 Liu C, Roddatis V, Kenesei P, et al. Shear-band thickness and shear-band cavities in a Zr-based metallic glass [J]. Acta Mater., 2017, 140: 206
11 Shen L Q, Luo P, Hu Y C, et al. Shear-band affected zone revealed by magnetic domains in a ferromagnetic metallic glass [J]. Nat. Commun., 2018, 9: 4414
12 Bokeloh J, Divinski S V, Reglitz G, et al. Tracer measurements of atomic diffusion inside shear bands of a bulk metallic glass [J]. Phys. Rev. Lett., 2011, 107: 235503
13 Schmidt V, Rösner H, Peterlechner M, et al. Quantitative measurement of density in a shear band of metallic glass monitored along its propagation direction [J]. Phys. Rev. Lett., 2015, 115: 035501
14 Qiao J C, Wang Q, Pelletier J M, et al. Structural heterogeneities and mechanical behavior of amorphous alloys [J]. Prog. Mater. Sci., 2019, 104: 250
15 Zhang Z F, Wu F F, He G, et al. Mechanical properties, damage and fracture mechanisms of bulk metallic glass materials [J]. J. Mater. Sci. Technol., 2007, 23: 747
16 Xu J, Ramamurty U, Ma E. The fracture toughness of bulk metallic glasses [J]. JOM, 2010, 62(4): 10
17 Sun B A, Wang W H. The fracture of bulk metallic glasses [J]. Prog. Mater. Sci., 2015, 74: 211
18 Demetriou M D, Launey M E, Garrett G, et al. A damage-tolerant glass [J]. Nat. Mater., 2011, 10: 123
19 Qu R T, Zhang P, Zhang Z F. Notch effect of materials: Strengthening or weakening? [J]. J. Mater. Sci. Technol., 2014, 30: 599
20 Wang X D, Qu R T, Wu S J, et al. Notch fatigue behavior: Metallic glass versus ultra-high strength steel [J]. Sci. Rep., 2016, 6: 35557
21 Zhao J X, Qu R T, Wu F F, et al. Fracture mechanism of some brittle metallic glasses [J]. J. Appl. Phys., 2009, 105: 103519
22 Zhang Z F, Zhang H, Shen B L, et al. Shear fracture and fragmentation mechanisms of bulk metallic glasses [J]. Philos. Mag. Lett., 2006, 86: 643
23 Zhang Z F, Wu F F, Gao W, et al. Wavy cleavage fracture of bulk metallic glass [J]. Appl. Phys. Lett., 2006, 89: 251917
24 Wang G, Zhao D Q, Bai H Y, et al. Nanoscale periodic morphologies on the fracture surface of brittle metallic glasses [J]. Phys. Rev. Lett., 2007, 98: 235501
25 Xi X K, Zhao D Q, Pan M X, et al. Fracture of brittle metallic glasses: Brittleness or plasticity [J]. Phys. Rev. Lett., 2005, 94: 125510
26 Lewandowski J J, Wang W H, Greer A L. Intrinsic plasticity or brittleness of metallic glasses [J]. Philos. Mag. Lett., 2005, 85: 77
27 Wang C, Cao Q P, Wang X D, et al. Intermediate temperature brittleness in metallic glasses [J]. Adv. Mater., 2017, 29: 1605537
28 Wu F F, Zheng W, Wu S D, et al. Shear stability of metallic glasses [J]. Int. J. Plast., 2011, 27: 560
29 Klaumünzer D, Maaß R, Löffler J F. Stick-slip dynamics and recent insights into shear banding in metallic glasses [J]. J. Mater. Res., 2011, 26: 1453
30 Shimizu F, Ogata S, Li J. Yield point of metallic glass [J]. Acta Mater., 2006, 54: 4293
31 Zhang Z F, Eckert J, Schultz L. Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass [J]. Acta Mater., 2003, 51: 1167
32 Jia H L, Wang G Y, Chen S Y, et al. Fatigue and fracture behavior of bulk metallic glasses and their composites [J]. Prog. Mater. Sci., 2018, 98: 168
33 Wright W J, Byer R R, Gu X J. High-speed imaging of a bulk metallic glass during uniaxial compression [J]. Appl. Phys. Lett., 2013, 102: 241920
34 Wright W J, Samale M W, Hufnagel T C, et al. Studies of shear band velocity using spatially and temporally resolved measurements of strain during quasistatic compression of a bulk metallic glass [J]. Acta Mater., 2009, 57: 4639
35 Song S X, Wang X L, Nieh T G. Capturing shear band propagation in a Zr-based metallic glass using a high-speed camera [J]. Scr. Mater., 2010, 62: 847
36 Qu R T, Liu Z Q, Wang G, et al. Progressive shear band propagation in metallic glasses under compression [J]. Acta Mater., 2015, 91: 19
37 Wright W J, Liu Y, Gu X J, et al. Experimental evidence for both progressive and simultaneous shear during quasistatic compression of a bulk metallic glass [J]. J. Appl. Phys., 2016, 119: 084908
38 Cheng Y Q, Ma E. Intrinsic shear strength of metallic glass [J]. Acta Mater., 2011, 59: 1800
39 Homer E R. Examining the initial stages of shear localization in amorphous metals [J]. Acta Mater., 2014, 63: 44
40 Park K W, Shibutani Y, Falk M L, et al. Shear localization and the plasticity of bulk amorphous alloys [J]. Scr. Mater., 2010, 63: 231
41 Packard C E, Homer E R, Al-Aqeeli N, et al. Cyclic hardening of metallic glasses under Hertzian contacts: Experiments and STZ dynamics simulations [J]. Philos. Mag., 2010, 90: 1373
42 Cao Q P, Liu J W, Yang K J, et al. Effect of pre-existing shear bands on the tensile mechanical properties of a bulk metallic glass [J]. Acta Mater., 2010, 58: 1276
43 Wang D P, Sun B A, Niu X R, et al. Mutual interaction of shear bands in metallic glasses [J]. Intermetallics, 2017, 85: 48
44 Dai L H. Shear banding in bulk metallic glasses [A].
44 Dodd B, Bai Y L. Adiabatic Shear Localization [M]. Amsterdam: Elsevier, 2012: 311
45 Huang Y J, Khong J C, Connolley T, et al. The onset of plasticity of a Zr-based bulk metallic glass [J]. Int. J. Plast., 2014, 60: 87
46 Qu R T, Calin M, Eckert J, et al. Metallic glasses: Notch-insensitive materials [J]. Scr. Mater., 2012, 66: 733
47 He Q, Shang J K, Ma E, et al. Crack-resistance curve of a Zr-Ti-Cu-Al bulk metallic glass with extraordinary fracture toughness [J]. Acta Mater., 2012, 60: 4940
48 Li D F, Shen Y, Xu J. Bending proof strength of Zr61Ti2Cu25Al12 bulk metallic glass and its correlation with shear-banding initiation [J]. Intermetallics, 2020, 126: 106915
49 Su C, Anand L. Plane strain indentation of a Zr-based metallic glass: Experiments and numerical simulation [J]. Acta Mater., 2006, 54: 179
50 Qu R T, Liu H S, Zhang Z F. In situ observation of bending stress-deflection response of metallic glass [J]. Mater. Sci. Eng., 2013, A582: 155
51 Wu S J, Wang X D, Qu R T, et al. Gradual shear band cracking and apparent softening of metallic glass under low temperature compression [J]. Intermetallics, 2017, 87: 45
52 Zhou D, Hou B, Li B J, et al. A comparative study of the rate effect on deformation mode in ductile and brittle bulk metallic glasses [J]. Intermetallics, 2018, 96: 94
53 Qu R T, Wu F F, Zhang Z F, et al. Direct observations on the evolution of shear bands into cracks in metallic glass [J]. J. Mater. Res., 2009, 24: 3130
54 Liu C, Das A, Wang W, et al. Shear-band cavities and strain hardening in a metallic glass revealed with phase-contrast X-ray tomography [J]. Scr. Mater., 2019, 170: 29
55 Singh I, Guo T F, Murali P, et al. Cavitation in materials with distributed weak zones: Implications on the origin of brittle fracture in metallic glasses [J]. J. Mech. Phys. Solids, 2013, 61: 1047
56 Guan P F, Lu S, Spector M J B, et al. Cavitation in amorphous solids [J]. Phys. Rev. Lett., 2013, 110: 185502
57 Qu R T, Zhang Z F. Compressive fracture morphology and mechanism of metallic glass [J]. J. Appl. Phys., 2013, 114: 193504
58 Qu R T, Wang S G, Wang X D, et al. Revealing the shear band cracking mechanism in metallic glass by X-ray tomography [J]. Scr. Mater., 2017, 133: 24
59 Spaepen F. On the fracture morphology of metallic glasses [J]. Acta Metall., 1975, 23: 615
60 Spaepen F, Turnbull D. A mechanism for the flow and fracture of metallic glasses [J]. Scr. Metall., 1974, 8: 563
61 Luo J, Shi Y F. Tensile fracture of metallic glasses via shear band cavitation [J]. Acta Mater., 2015, 82: 483
62 Murali P, Guo T F, Zhang Y W, et al. Atomic scale fluctuations govern brittle fracture and cavitation behavior in metallic glasses [J]. Phys. Rev. Lett., 2011, 107: 215501
63 Maaß R, Birckigt P, Borchers C, et al. Long range stress fields and cavitation along a shear band in a metallic glass: The local origin of fracture [J]. Acta Mater., 2015, 98: 94
64 Zhang Z F, He G, Eckert J, et al. Fracture mechanisms in bulk metallic glassy materials [J]. Phys. Rev. Lett., 2003, 91: 045505
65 Jin C R, Yang S Y, Deng X Y, et al. Effect of nano-crystallization on dynamic compressive property of Zr-based amorphous alloy [J]. Acta Metall. Sin., 2019, 55: 1561
65 金辰日, 杨素媛, 邓学元等. 纳米晶化对锆基非晶合金动态压缩性能的影响 [J]. 金属学报, 2019, 55: 1561
66 Brennhaugen D D E, Georgarakis K, Yokoyama Y, et al. Probing heat generation during tensile plastic deformation of a bulk metallic glass at cryogenic temperature [J]. Sci. Rep., 2018, 8: 16317
67 Lewandowski J J, Greer A L. Temperature rise at shear bands in metallic glasses [J]. Nat. Mater., 2006, 5: 15
68 Argon A S, Salama M. The mechanism of fracture in glassy materials capable of some inelastic deformation [J]. Mater. Sci. Eng., 1976, 23: 219
69 Qu R T, Wu S J, Wang S G, et al. Shear banding stability and fracture of metallic glass: Effect of external confinement [J]. J. Mech. Phys. Solids, 2020, 138: 103922
70 Qu R T, Wang S G, Wang X D, et al. Shear band fracture in metallic glass: Sample size effect [J]. Mater. Sci. Eng., 2019, A739: 377
71 Qu R T, Wang S G, Li G J, et al. Shear band fracture in metallic glass: Hot or cold? [J]. Scr. Mater., 2019, 162: 136
72 Chen W, Chan K C, Chen S H, et al. Plasticity enhancement of a Zr-based bulk metallic glass by an electroplated Cu/Ni bilayered coating [J]. Mater. Sci. Eng., 2012, A552: 199
73 Chu J P, Greene J E, Jang J S C, et al. Bendable bulk metallic glass: Effects of a thin, adhesive, strong, and ductile coating [J]. Acta Mater., 2012, 60: 3226
74 Sun B A, Chen S H, Lu Y M, et al. Origin of shear stability and compressive ductility enhancement of metallic glasses by metal coating [J]. Sci. Rep., 2016, 6: 27852
75 Cao Y F, Xie X, Antonaglia J, et al. Laser shock peening on Zr-based bulk metallic glass and its effect on plasticity: Experiment and modeling [J]. Sci. Rep., 2015, 5: 10789
76 Cheng Y Y, Pang S J, Chen C, et al. Tensile plasticity in monolithic bulk metallic glass with sandwiched structure [J]. J. Alloys Compd., 2016, 688: 724
77 Zhang J Y, Liu G, Sun J. Self-toughening crystalline Cu/amorphous Cu-Zr nanolaminates: Deformation-induced devitrification [J]. Acta Mater., 2014, 66: 22
78 Jiang M Q, Wilde G, Chen J H, et al. Cryogenic-temperature-induced transition from shear to dilatational failure in metallic glasses [J]. Acta Mater., 2014, 77: 248
79 Li G, Jiang M Q, Jiang F, et al. Temperature-induced ductile-to-brittle transition of bulk metallic glasses [J]. Appl. Phys. Lett., 2013, 102: 171901
80 Wu S J, Qu R T, Wang X D, et al. Fracture and strength of a TiZr-based metallic glass at low temperatures [J]. Mater. Sci. Eng., 2019, A768: 138453
81 Zhang Z F, Eckert J. Unified tensile fracture criterion [J]. Phys. Rev. Lett., 2005, 94: 094301
82 Qiao D C, Fan G J, Liaw P K, et al. Fatigue behaviors of the Cu47.5Zr47.5Al5 bulk-metallic glass (BMG) and Cu47.5Zr38Hf9.5Al5 BMG composite [J]. Int. J. Fatigue, 2007, 29: 2149
83 Freels M, Liaw P K, Wang G Y, et al. Stress-life fatigue behavior and fracture-surface morphology of a Cu-based bulk-metallic glass [J]. J. Mater. Res., 2006, 22: 374
84 Gilbert C J, Lippmann J M, Ritchie R O. Fatigue of a Zr-Ti-Cu-Ni-Be bulk amorphous metal: Stress/life and crack-growth behavior [J]. Scr. Mater., 1998, 38: 537
85 Luo J, Dahmen K, Liaw P K, et al. Low-cycle fatigue of metallic glass nanowires [J]. Acta Mater., 2015, 87: 225
86 Wang G Y, Liaw P K, Yokoyama Y, et al. Size effects on the fatigue behavior of bulk metallic glasses [J]. J. Appl. Phys., 2011, 110: 113507
87 Wang G Y, Liaw P K, Peter W H, et al. Fatigue behavior of bulk-metallic glasses [J]. Intermetallics, 2004, 12: 885
88 Wang X D, Qu R T, Liu Z Q, et al. Shear band propagation and plastic softening of metallic glass under cyclic compression [J]. J. Alloys Compd., 2017, 695: 2016
89 Wang X D, Qu R T, Liu Z Q, et al. Shear band-mediated fatigue cracking mechanism of metallic glass at high stress level [J]. Mater. Sci. Eng., 2015, A627: 336
90 Sha Z D, Qu S X, Liu Z S, et al. Cyclic deformation in metallic glasses [J]. Nano Lett., 2015, 15: 7010
91 Ye Y F, Wang S, Fan J, et al. Atomistic mechanism of elastic softening in metallic glass under cyclic loading revealed by molecular dynamics simulations [J]. Intermetallics, 2016, 68: 5
92 Zhang Q S, Deng Y F, Zhang H F, et al. Cyclic softening of Zr55Al10Ni5Cu30 bulk amorphous alloy [J]. J. Mater. Sci. Lett., 2003, 22: 1731
93 Packard C E, Schuh C A. Initiation of shear bands near a stress concentration in metallic glass [J]. Acta Mater., 2007, 55: 5348
94 Wang G Y, Liaw P K, Yokoyama Y, et al. Evolution of shear bands and fatigue striations in a bulk metallic glass during fatigue [J]. Intermetallics, 2012, 23: 96
95 Wang X D, Qu R T, Wu S J, et al. Fatigue damage and fracture behavior of metallic glass under cyclic compression [J]. Mater. Sci. Eng., 2018, A717: 41
96 Wang X D, Qu R T, Liu Z Q, et al. Evolution of shear-band cracking in metallic glass under cyclic compression [J]. Mater. Sci. Eng., 2017, A696: 267
97 Wu F F, Zhang Z F, Shen J, et al. Shear deformation and plasticity of metallic glass under multiaxial loading [J]. Acta Mater., 2008, 56: 894
98 Qu R T, Stoica M, Eckert J, et al. Tensile fracture morphologies of bulk metallic glass [J]. J. Appl. Phys., 2010, 108: 063509
99 Liu Y, Wang Y M, Liu L. Fatigue crack propagation behavior and fracture toughness in a Ni-free ZrCuFeAlAg bulk metallic glass [J]. Acta Mater., 2015, 92: 209
100 Launey M E, Busch R, Kruzic J J. Effects of free volume changes and residual stresses on the fatigue and fracture behavior of a Zr-Ti-Ni-Cu-Be bulk metallic glass [J]. Acta Mater., 2008, 56: 500
101 Chen Q J, Shen J, Zhang D L, et al. Mechanical performance and fracture behavior of Fe41Co7Cr15Mo14Y2C15B6 bulk metallic glass [J]. J. Mater. Res., 2006, 22: 358
102 Qu R T, Tönnies D, Tian L, et al. Size-dependent failure of the strongest bulk metallic glass [J]. Acta Mater., 2019, 178: 249
103 Sammis C G, Ashby M F. The failure of brittle porous solids under compressive stress states [J]. Acta Metall., 1986, 34: 511
104 Zheng Q, Cheng S, Strader J H, et al. Critical size and strength of the best bulk metallic glass former in the Mg-Cu-Gd ternary system [J]. Scr. Mater., 2007, 56: 161
105 Wu F F, Zhang Z F, Mao S X. Size-dependent shear fracture and global tensile plasticity of metallic glasses [J]. Acta Mater., 2009, 57: 257
106 Han Z, Wu W F, Li Y, et al. An instability index of shear band for plasticity in metallic glasses [J]. Acta Mater., 2009, 57: 1367
107 Greer J R, De Hosson J T M. Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect [J]. Prog. Mater. Sci., 2011, 56: 654
108 Zheng X L, Wang H, Zheng M S, et al. Notch Strength and Notch Sensitivity of Materials: Fracture Criterion of Notched Elements [M]. Beijing: Science Press, 2008: 15
109 Lei X Q, Li C L, Shi X H, et al. Notch strengthening or weakening governed by transition of shear failure to normal mode fracture [J]. Sci. Rep., 2015, 5: 10537
110 Pan J, Wang Y X, Li Y. Ductile fracture in notched bulk metallic glasses [J]. Acta Mater., 2017, 136: 126
111 Yang G N, Qu R T, Xu G D, et al. Understanding the tensile fracture of deeply-notched metallic glasses [J]. Int. J. Solids Struct., 2020, 207: 70
112 Li Q S, Qu R T, Zhang Z F. Shear banding and fracture behaviors of a bulk metallic glass studied via in-situ bending experiments with notched and un-notched specimens [J]. Mater. Sci. Eng., 2020, A798: 140005
113 Qu R T, Zhang Z F. Failure surfaces of high-strength materials predicted by a universal failure criterion [J]. Int. J. Fract., 2018, 211: 237
114 Qu R T, Zhang Z F. A universal fracture criterion for high-strength materials [J]. Sci. Rep., 2013, 3: 1117
115 Qu R T, Eckert J, Zhang Z F. Tensile fracture criterion of metallic glass [J]. J. Appl. Phys., 2011, 109: 083544
116 Sha Z D, Pei Q X, Liu Z S, et al. Necking and notch strengthening in metallic glass with symmetric sharp-and-deep notches [J]. Sci. Rep., 2015, 5: 10797
117 Sha Z D, Pei Q X, Sorkin V, et al. On the notch sensitivity of CuZr metallic glasses [J]. Appl. Phys. Lett., 2013, 103: 081903
118 Gludovatz B, Demetriou M D, Floyd M, et al. Enhanced fatigue endurance of metallic glasses through a staircase-like fracture mechanism [J]. Proc. Natl. Acad. Sci. USA, 2013, 110: 18419
119 Song Z Q, He Q, Ma E, et al. Fatigue endurance limit and crack growth behavior of a high-toughness Zr61Ti2Cu25Al12 bulk metallic glass [J]. Acta Mater., 2015, 99: 165
120 Wang W H. Flow units: The “defects” of amorphous alloys [J]. Sci. Sin. Phys. Mech. Astron., 2014, 44: 396
120 汪卫华. 非晶中“缺陷”——流变单元研究 [J]. 中国科学: 物理学 力学 天文学, 2014, 44: 396
121 Ding J, Patinet S, Falk M L, et al. Soft spots and their structural signature in a metallic glass [J]. Proc. Natl. Acad. Sci. USA, 2014, 111: 14052
122 Murali P, Ramamurty U. Embrittlement of a bulk metallic glass due to sub-Tg annealing [J]. Acta Mater., 2005, 53: 1467
123 Sun Y H, Concustell A, Greer A L. Thermomechanical processing of metallic glasses: Extending the range of the glassy state [J]. Nat. Rev. Mater., 2016, 1: 16039
124 Pan J, Ivanov Y P, Zhou W H, et al. Strain-hardening and suppression of shear-banding in rejuvenated bulk metallic glass [J]. Nature, 2020, 578: 559
125 Das A, Dufresne E M, Maaß R. Structural dynamics and rejuvenation during cryogenic cycling in a Zr-based metallic glass [J]. Acta Mater., 2020, 196: 723
126 Li B S, Xie S H, Kruzic J J. Toughness enhancement and heterogeneous softening of a cryogenically cycled Zr-Cu-Ni-Al-Nb bulk metallic glass [J]. Acta Mater., 2019, 176: 278
127 Wang W H, Luo P. The dynamic behavior hidden in the long time scale of metallic glasses and its effect on the properties [J]. Acta Metall. Sin., 2018, 54: 1479
127 汪卫华, 罗 鹏. 金属玻璃中隐藏在长时间尺度下的动力学行为及其对性能的影响 [J]. 金属学报, 2018, 54: 1479
128 Ketov S V, Sun Y H, Nachum S, et al. Rejuvenation of metallic glasses by non-affine thermal strain [J]. Nature, 2015, 524: 200
129 Zhao L, Chan K C, Chen S H, et al. Tunable tensile ductility of metallic glasses with partially rejuvenated amorphous structures [J]. Acta Mater., 2019, 169: 122
130 Song K K, Han X L, Pauly S, et al. Rapid and partial crystallization to design ductile CuZr-based bulk metallic glass composites [J]. Mater. Des., 2018, 139: 132
131 Wang X D, Qu R T, Wu S J, et al. Improving fatigue property of metallic glass by tailoring the microstructure to suppress shear band formation [J]. Materialia, 2019, 7: 100407
132 Qu R T, Zhang Q S, Zhang Z F. Achieving macroscopic tensile plasticity of monolithic bulk metallic glass by surface treatment [J]. Scr. Mater., 2013, 68: 845
133 Qu R T, Zhao J X, Stoica M, et al. Macroscopic tensile plasticity of bulk metallic glass through designed artificial defects [J]. Mater. Sci. Eng., 2012, A534: 365
134 Zhao L, Han D X, Guan S, et al. Simultaneous improvement of plasticity and strength of metallic glasses by tailoring residual stress: Role of stress gradient on shear banding [J]. Mater. Des., 2021, 197: 109246
135 Sarac B, Schroers J. Designing tensile ductility in metallic glasses [J]. Nat. Commun., 2013, 4: 2158
136 Gao M, Dong J, Huan Y, et al. Macroscopic tensile plasticity by scalarizating stress distribution in bulk metallic glass [J]. Sci. Rep., 2016, 6: 21929
137 Feng S D, Li L, Chan K C, et al. Enhancing strength and plasticity by pre-introduced indent-notches in Zr36Cu64 metallic glass: A molecular dynamics simulation study [J]. J. Mater. Sci. Technol., 2020, 43: 119
138 Zhao J X, Wu F F, Qu R T, et al. Plastic deformability of metallic glass by artificial macroscopic notches [J]. Acta Mater., 2010, 58: 5420
139 Sha Z D, Teng Y, Poh L H, et al. Notch strengthening in nanoscale metallic glasses [J]. Acta Mater., 2019, 169: 147
140 Luo Y, Yang G N, Shao Y, et al. The effect of void defects on the shear band nucleation of metallic glasses [J]. Intermetallics, 2018, 94: 114
141 Chen S H, Yue T M, Tsui C P, et al. Flaw-induced plastic-flow dynamics in bulk metallic glasses under tension [J]. Sci. Rep., 2016, 6: 36130
142 Bui T X, Fang T H, Lee C I. Effects of flaw shape and size on fracture toughness and destructive mechanism inside Ni15Al70Co15 metallic glass [J]. Comput. Mater. Sci., 2020, 183: 109807
143 Chen H S, Wang T T. Mechanical properties of metallic glasses of Pd-Si-based alloys [J]. J. Appl. Phys., 1970, 41: 5338
144 Ren F, Ward L, Williams T, et al. Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments [J]. Sci. Adv., 2018, 4: eaaq1566
145 Wang Q, Jain A. A transferable machine-learning framework linking interstice distribution and plastic heterogeneity in metallic glasses [J]. Nat. Commun., 2019, 10: 5537
146 Tian L, Fan Y, Li L, et al. Identifying flow defects in amorphous alloys using machine learning outlier detection methods [J]. Scr. Mater., 2020, 186: 185
147 Qiao J C, Liu X D, Wang Q, et al. Fast secondary relaxation and plasticity initiation in metallic glasses [J]. Nat. Sci. Rev., 2018, 5: 616
148 Tönnies D, Samwer K, Derlet P M, et al. Rate-dependent shear-band initiation in a metallic glass [J]. Appl. Phys. Lett., 2015, 106: 171907
149 Klaumünzer D, Lazarev A, Maaß R, et al. Probing shear-band initiation in metallic glasses [J]. Phys. Rev. Lett., 2011, 107: 185502
150 Volkert C A, Minor A M. Focused ion beam microscopy and micromachining [J]. MRS Bull., 2007, 32: 389.
151 Tian L, Cheng Y Q, Shan Z W, et al. Approaching the ideal elastic limit of metallic glasses [J]. Nat. Commun., 2012, 3: 609
[1] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[4] 赵亚峰, 刘苏杰, 陈云, 马会, 马广财, 郭翼. 铁素体-贝氏体双相钢韧性断裂过程中的夹杂物临界尺寸及孔洞生长[J]. 金属学报, 2023, 59(5): 611-622.
[5] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[6] 韩卫忠, 卢岩, 张雨衡. 体心立方金属韧脆转变机制研究进展[J]. 金属学报, 2023, 59(3): 335-348.
[7] 杨杜, 白琴, 胡悦, 张勇, 李志军, 蒋力, 夏爽, 周邦新. GH3535合金中晶界特征对碲致脆性开裂影响的分形分析[J]. 金属学报, 2023, 59(2): 248-256.
[8] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[9] 戚钊, 王斌, 张鹏, 刘睿, 张振军, 张哲峰. 应力比对含缺陷选区激光熔化TC4合金稳态疲劳裂纹扩展速率的影响[J]. 金属学报, 2023, 59(10): 1411-1418.
[10] 于少霞, 王麒, 邓想涛, 王昭东. GH3600镍基高温合金极薄带的制备及尺寸效应[J]. 金属学报, 2023, 59(10): 1365-1375.
[11] 彭治强, 柳前, 郭东伟, 曾子航, 曹江海, 侯自兵. 基于大数据挖掘的连铸结晶器传热独立变化规律[J]. 金属学报, 2023, 59(10): 1389-1400.
[12] 祝国梁, 孔德成, 周文哲, 贺戬, 董安平, 疏达, 孙宝德. 选区激光熔化 γ' 相强化镍基高温合金裂纹形成机理与抗裂纹设计研究进展[J]. 金属学报, 2023, 59(1): 16-30.
[13] 周红伟, 高建兵, 沈加明, 赵伟, 白凤梅, 何宜柱. 高温低周疲劳下C-HRA-5奥氏体耐热钢中孪晶界演变[J]. 金属学报, 2022, 58(8): 1013-1023.
[14] 杨秦政, 杨晓光, 黄渭清, 石多奇. 粉末高温合金FGH4096的疲劳小裂纹扩展行为[J]. 金属学报, 2022, 58(5): 683-694.
[15] 李细锋, 李天乐, 安大勇, 吴会平, 陈劼实, 陈军. 钛合金及其扩散焊疲劳特性研究进展[J]. 金属学报, 2022, 58(4): 473-485.