|
|
金属玻璃的剪切带变形与断裂机制研究进展 |
屈瑞涛1,2( ), 王晓地1, 吴少杰1, 张哲峰1( ) |
1.中国科学院金属研究所 沈阳 110016 2.西北工业大学 材料学院 西安 710072 |
|
Research Progress in Shear Banding Deformation and Fracture Mechanisms of Metallic Glasses |
QU Ruitao1,2( ), WANG Xiaodi1, WU Shaojie1, ZHANG Zhefeng1( ) |
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2.School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China |
引用本文:
屈瑞涛, 王晓地, 吴少杰, 张哲峰. 金属玻璃的剪切带变形与断裂机制研究进展[J]. 金属学报, 2021, 57(4): 453-472.
Ruitao QU,
Xiaodi WANG,
Shaojie WU,
Zhefeng ZHANG.
Research Progress in Shear Banding Deformation and Fracture Mechanisms of Metallic Glasses[J]. Acta Metall Sin, 2021, 57(4): 453-472.
1 |
Wang W H. The nature and properties of amorphous matter [J]. Prog. Phys., 2013, 33: 177
|
1 |
汪卫华. 非晶态物质的本质和特性 [J]. 物理学进展, 2013, 33: 177
|
2 |
Schuh C A, Hufnagel T C, Ramamurty U. Mechanical behavior of amorphous alloys [J]. Acta Mater., 2007, 55: 4067
|
3 |
Steif P S, Spaepen F, Hutchinson J W. Strain localization in amorphous metals [J]. Acta Metall., 1982, 30: 447
|
4 |
Greer A L, Cheng Y Q, Ma E. Shear bands in metallic glasses [J]. Mater. Sci. Eng., 2013, R74: 71
|
5 |
Zhang Z F, Qu R T, Liu Z Q. Advances in fracture behavior and strength theory of metallic glasses [J]. Acta Metall. Sin., 2016, 52: 1171
|
5 |
张哲峰, 屈瑞涛, 刘增乾. 金属玻璃的断裂行为与强度理论研究进展 [J]. 金属学报, 2016, 52: 1171
|
6 |
Gan K F, Jiang S S, Huang Y J, et al. Elucidating how correlated operation of shear transformation zones leads to shear localization and fracture in metallic glasses: Tensile tests on Cu-Zr based metallic-glass microwires, molecular dynamics simulations, and modelling [J]. Int. J. Plast., 2019, 119: 1
|
7 |
Maaß R, Samwer K, Arnold W, et al. A single shear band in a metallic glass: Local core and wide soft zone [J]. Appl. Phys. Lett., 2014, 105: 171902
|
8 |
Pan J, Chen Q, Liu L, et al. Softening and dilatation in a single shear band [J]. Acta Mater., 2011, 59: 5146
|
9 |
Zhang Y, Greer A L. Thickness of shear bands in metallic glasses [J]. Appl. Phys. Lett., 2006, 89: 071907
|
10 |
Liu C, Roddatis V, Kenesei P, et al. Shear-band thickness and shear-band cavities in a Zr-based metallic glass [J]. Acta Mater., 2017, 140: 206
|
11 |
Shen L Q, Luo P, Hu Y C, et al. Shear-band affected zone revealed by magnetic domains in a ferromagnetic metallic glass [J]. Nat. Commun., 2018, 9: 4414
|
12 |
Bokeloh J, Divinski S V, Reglitz G, et al. Tracer measurements of atomic diffusion inside shear bands of a bulk metallic glass [J]. Phys. Rev. Lett., 2011, 107: 235503
|
13 |
Schmidt V, Rösner H, Peterlechner M, et al. Quantitative measurement of density in a shear band of metallic glass monitored along its propagation direction [J]. Phys. Rev. Lett., 2015, 115: 035501
|
14 |
Qiao J C, Wang Q, Pelletier J M, et al. Structural heterogeneities and mechanical behavior of amorphous alloys [J]. Prog. Mater. Sci., 2019, 104: 250
|
15 |
Zhang Z F, Wu F F, He G, et al. Mechanical properties, damage and fracture mechanisms of bulk metallic glass materials [J]. J. Mater. Sci. Technol., 2007, 23: 747
|
16 |
Xu J, Ramamurty U, Ma E. The fracture toughness of bulk metallic glasses [J]. JOM, 2010, 62(4): 10
|
17 |
Sun B A, Wang W H. The fracture of bulk metallic glasses [J]. Prog. Mater. Sci., 2015, 74: 211
|
18 |
Demetriou M D, Launey M E, Garrett G, et al. A damage-tolerant glass [J]. Nat. Mater., 2011, 10: 123
|
19 |
Qu R T, Zhang P, Zhang Z F. Notch effect of materials: Strengthening or weakening? [J]. J. Mater. Sci. Technol., 2014, 30: 599
|
20 |
Wang X D, Qu R T, Wu S J, et al. Notch fatigue behavior: Metallic glass versus ultra-high strength steel [J]. Sci. Rep., 2016, 6: 35557
|
21 |
Zhao J X, Qu R T, Wu F F, et al. Fracture mechanism of some brittle metallic glasses [J]. J. Appl. Phys., 2009, 105: 103519
|
22 |
Zhang Z F, Zhang H, Shen B L, et al. Shear fracture and fragmentation mechanisms of bulk metallic glasses [J]. Philos. Mag. Lett., 2006, 86: 643
|
23 |
Zhang Z F, Wu F F, Gao W, et al. Wavy cleavage fracture of bulk metallic glass [J]. Appl. Phys. Lett., 2006, 89: 251917
|
24 |
Wang G, Zhao D Q, Bai H Y, et al. Nanoscale periodic morphologies on the fracture surface of brittle metallic glasses [J]. Phys. Rev. Lett., 2007, 98: 235501
|
25 |
Xi X K, Zhao D Q, Pan M X, et al. Fracture of brittle metallic glasses: Brittleness or plasticity [J]. Phys. Rev. Lett., 2005, 94: 125510
|
26 |
Lewandowski J J, Wang W H, Greer A L. Intrinsic plasticity or brittleness of metallic glasses [J]. Philos. Mag. Lett., 2005, 85: 77
|
27 |
Wang C, Cao Q P, Wang X D, et al. Intermediate temperature brittleness in metallic glasses [J]. Adv. Mater., 2017, 29: 1605537
|
28 |
Wu F F, Zheng W, Wu S D, et al. Shear stability of metallic glasses [J]. Int. J. Plast., 2011, 27: 560
|
29 |
Klaumünzer D, Maaß R, Löffler J F. Stick-slip dynamics and recent insights into shear banding in metallic glasses [J]. J. Mater. Res., 2011, 26: 1453
|
30 |
Shimizu F, Ogata S, Li J. Yield point of metallic glass [J]. Acta Mater., 2006, 54: 4293
|
31 |
Zhang Z F, Eckert J, Schultz L. Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass [J]. Acta Mater., 2003, 51: 1167
|
32 |
Jia H L, Wang G Y, Chen S Y, et al. Fatigue and fracture behavior of bulk metallic glasses and their composites [J]. Prog. Mater. Sci., 2018, 98: 168
|
33 |
Wright W J, Byer R R, Gu X J. High-speed imaging of a bulk metallic glass during uniaxial compression [J]. Appl. Phys. Lett., 2013, 102: 241920
|
34 |
Wright W J, Samale M W, Hufnagel T C, et al. Studies of shear band velocity using spatially and temporally resolved measurements of strain during quasistatic compression of a bulk metallic glass [J]. Acta Mater., 2009, 57: 4639
|
35 |
Song S X, Wang X L, Nieh T G. Capturing shear band propagation in a Zr-based metallic glass using a high-speed camera [J]. Scr. Mater., 2010, 62: 847
|
36 |
Qu R T, Liu Z Q, Wang G, et al. Progressive shear band propagation in metallic glasses under compression [J]. Acta Mater., 2015, 91: 19
|
37 |
Wright W J, Liu Y, Gu X J, et al. Experimental evidence for both progressive and simultaneous shear during quasistatic compression of a bulk metallic glass [J]. J. Appl. Phys., 2016, 119: 084908
|
38 |
Cheng Y Q, Ma E. Intrinsic shear strength of metallic glass [J]. Acta Mater., 2011, 59: 1800
|
39 |
Homer E R. Examining the initial stages of shear localization in amorphous metals [J]. Acta Mater., 2014, 63: 44
|
40 |
Park K W, Shibutani Y, Falk M L, et al. Shear localization and the plasticity of bulk amorphous alloys [J]. Scr. Mater., 2010, 63: 231
|
41 |
Packard C E, Homer E R, Al-Aqeeli N, et al. Cyclic hardening of metallic glasses under Hertzian contacts: Experiments and STZ dynamics simulations [J]. Philos. Mag., 2010, 90: 1373
|
42 |
Cao Q P, Liu J W, Yang K J, et al. Effect of pre-existing shear bands on the tensile mechanical properties of a bulk metallic glass [J]. Acta Mater., 2010, 58: 1276
|
43 |
Wang D P, Sun B A, Niu X R, et al. Mutual interaction of shear bands in metallic glasses [J]. Intermetallics, 2017, 85: 48
|
44 |
Dai L H. Shear banding in bulk metallic glasses [A].
|
44 |
Dodd B, Bai Y L. Adiabatic Shear Localization [M]. Amsterdam: Elsevier, 2012: 311
|
45 |
Huang Y J, Khong J C, Connolley T, et al. The onset of plasticity of a Zr-based bulk metallic glass [J]. Int. J. Plast., 2014, 60: 87
|
46 |
Qu R T, Calin M, Eckert J, et al. Metallic glasses: Notch-insensitive materials [J]. Scr. Mater., 2012, 66: 733
|
47 |
He Q, Shang J K, Ma E, et al. Crack-resistance curve of a Zr-Ti-Cu-Al bulk metallic glass with extraordinary fracture toughness [J]. Acta Mater., 2012, 60: 4940
|
48 |
Li D F, Shen Y, Xu J. Bending proof strength of Zr61Ti2Cu25Al12 bulk metallic glass and its correlation with shear-banding initiation [J]. Intermetallics, 2020, 126: 106915
|
49 |
Su C, Anand L. Plane strain indentation of a Zr-based metallic glass: Experiments and numerical simulation [J]. Acta Mater., 2006, 54: 179
|
50 |
Qu R T, Liu H S, Zhang Z F. In situ observation of bending stress-deflection response of metallic glass [J]. Mater. Sci. Eng., 2013, A582: 155
|
51 |
Wu S J, Wang X D, Qu R T, et al. Gradual shear band cracking and apparent softening of metallic glass under low temperature compression [J]. Intermetallics, 2017, 87: 45
|
52 |
Zhou D, Hou B, Li B J, et al. A comparative study of the rate effect on deformation mode in ductile and brittle bulk metallic glasses [J]. Intermetallics, 2018, 96: 94
|
53 |
Qu R T, Wu F F, Zhang Z F, et al. Direct observations on the evolution of shear bands into cracks in metallic glass [J]. J. Mater. Res., 2009, 24: 3130
|
54 |
Liu C, Das A, Wang W, et al. Shear-band cavities and strain hardening in a metallic glass revealed with phase-contrast X-ray tomography [J]. Scr. Mater., 2019, 170: 29
|
55 |
Singh I, Guo T F, Murali P, et al. Cavitation in materials with distributed weak zones: Implications on the origin of brittle fracture in metallic glasses [J]. J. Mech. Phys. Solids, 2013, 61: 1047
|
56 |
Guan P F, Lu S, Spector M J B, et al. Cavitation in amorphous solids [J]. Phys. Rev. Lett., 2013, 110: 185502
|
57 |
Qu R T, Zhang Z F. Compressive fracture morphology and mechanism of metallic glass [J]. J. Appl. Phys., 2013, 114: 193504
|
58 |
Qu R T, Wang S G, Wang X D, et al. Revealing the shear band cracking mechanism in metallic glass by X-ray tomography [J]. Scr. Mater., 2017, 133: 24
|
59 |
Spaepen F. On the fracture morphology of metallic glasses [J]. Acta Metall., 1975, 23: 615
|
60 |
Spaepen F, Turnbull D. A mechanism for the flow and fracture of metallic glasses [J]. Scr. Metall., 1974, 8: 563
|
61 |
Luo J, Shi Y F. Tensile fracture of metallic glasses via shear band cavitation [J]. Acta Mater., 2015, 82: 483
|
62 |
Murali P, Guo T F, Zhang Y W, et al. Atomic scale fluctuations govern brittle fracture and cavitation behavior in metallic glasses [J]. Phys. Rev. Lett., 2011, 107: 215501
|
63 |
Maaß R, Birckigt P, Borchers C, et al. Long range stress fields and cavitation along a shear band in a metallic glass: The local origin of fracture [J]. Acta Mater., 2015, 98: 94
|
64 |
Zhang Z F, He G, Eckert J, et al. Fracture mechanisms in bulk metallic glassy materials [J]. Phys. Rev. Lett., 2003, 91: 045505
|
65 |
Jin C R, Yang S Y, Deng X Y, et al. Effect of nano-crystallization on dynamic compressive property of Zr-based amorphous alloy [J]. Acta Metall. Sin., 2019, 55: 1561
|
65 |
金辰日, 杨素媛, 邓学元等. 纳米晶化对锆基非晶合金动态压缩性能的影响 [J]. 金属学报, 2019, 55: 1561
|
66 |
Brennhaugen D D E, Georgarakis K, Yokoyama Y, et al. Probing heat generation during tensile plastic deformation of a bulk metallic glass at cryogenic temperature [J]. Sci. Rep., 2018, 8: 16317
|
67 |
Lewandowski J J, Greer A L. Temperature rise at shear bands in metallic glasses [J]. Nat. Mater., 2006, 5: 15
|
68 |
Argon A S, Salama M. The mechanism of fracture in glassy materials capable of some inelastic deformation [J]. Mater. Sci. Eng., 1976, 23: 219
|
69 |
Qu R T, Wu S J, Wang S G, et al. Shear banding stability and fracture of metallic glass: Effect of external confinement [J]. J. Mech. Phys. Solids, 2020, 138: 103922
|
70 |
Qu R T, Wang S G, Wang X D, et al. Shear band fracture in metallic glass: Sample size effect [J]. Mater. Sci. Eng., 2019, A739: 377
|
71 |
Qu R T, Wang S G, Li G J, et al. Shear band fracture in metallic glass: Hot or cold? [J]. Scr. Mater., 2019, 162: 136
|
72 |
Chen W, Chan K C, Chen S H, et al. Plasticity enhancement of a Zr-based bulk metallic glass by an electroplated Cu/Ni bilayered coating [J]. Mater. Sci. Eng., 2012, A552: 199
|
73 |
Chu J P, Greene J E, Jang J S C, et al. Bendable bulk metallic glass: Effects of a thin, adhesive, strong, and ductile coating [J]. Acta Mater., 2012, 60: 3226
|
74 |
Sun B A, Chen S H, Lu Y M, et al. Origin of shear stability and compressive ductility enhancement of metallic glasses by metal coating [J]. Sci. Rep., 2016, 6: 27852
|
75 |
Cao Y F, Xie X, Antonaglia J, et al. Laser shock peening on Zr-based bulk metallic glass and its effect on plasticity: Experiment and modeling [J]. Sci. Rep., 2015, 5: 10789
|
76 |
Cheng Y Y, Pang S J, Chen C, et al. Tensile plasticity in monolithic bulk metallic glass with sandwiched structure [J]. J. Alloys Compd., 2016, 688: 724
|
77 |
Zhang J Y, Liu G, Sun J. Self-toughening crystalline Cu/amorphous Cu-Zr nanolaminates: Deformation-induced devitrification [J]. Acta Mater., 2014, 66: 22
|
78 |
Jiang M Q, Wilde G, Chen J H, et al. Cryogenic-temperature-induced transition from shear to dilatational failure in metallic glasses [J]. Acta Mater., 2014, 77: 248
|
79 |
Li G, Jiang M Q, Jiang F, et al. Temperature-induced ductile-to-brittle transition of bulk metallic glasses [J]. Appl. Phys. Lett., 2013, 102: 171901
|
80 |
Wu S J, Qu R T, Wang X D, et al. Fracture and strength of a TiZr-based metallic glass at low temperatures [J]. Mater. Sci. Eng., 2019, A768: 138453
|
81 |
Zhang Z F, Eckert J. Unified tensile fracture criterion [J]. Phys. Rev. Lett., 2005, 94: 094301
|
82 |
Qiao D C, Fan G J, Liaw P K, et al. Fatigue behaviors of the Cu47.5Zr47.5Al5 bulk-metallic glass (BMG) and Cu47.5Zr38Hf9.5Al5 BMG composite [J]. Int. J. Fatigue, 2007, 29: 2149
|
83 |
Freels M, Liaw P K, Wang G Y, et al. Stress-life fatigue behavior and fracture-surface morphology of a Cu-based bulk-metallic glass [J]. J. Mater. Res., 2006, 22: 374
|
84 |
Gilbert C J, Lippmann J M, Ritchie R O. Fatigue of a Zr-Ti-Cu-Ni-Be bulk amorphous metal: Stress/life and crack-growth behavior [J]. Scr. Mater., 1998, 38: 537
|
85 |
Luo J, Dahmen K, Liaw P K, et al. Low-cycle fatigue of metallic glass nanowires [J]. Acta Mater., 2015, 87: 225
|
86 |
Wang G Y, Liaw P K, Yokoyama Y, et al. Size effects on the fatigue behavior of bulk metallic glasses [J]. J. Appl. Phys., 2011, 110: 113507
|
87 |
Wang G Y, Liaw P K, Peter W H, et al. Fatigue behavior of bulk-metallic glasses [J]. Intermetallics, 2004, 12: 885
|
88 |
Wang X D, Qu R T, Liu Z Q, et al. Shear band propagation and plastic softening of metallic glass under cyclic compression [J]. J. Alloys Compd., 2017, 695: 2016
|
89 |
Wang X D, Qu R T, Liu Z Q, et al. Shear band-mediated fatigue cracking mechanism of metallic glass at high stress level [J]. Mater. Sci. Eng., 2015, A627: 336
|
90 |
Sha Z D, Qu S X, Liu Z S, et al. Cyclic deformation in metallic glasses [J]. Nano Lett., 2015, 15: 7010
|
91 |
Ye Y F, Wang S, Fan J, et al. Atomistic mechanism of elastic softening in metallic glass under cyclic loading revealed by molecular dynamics simulations [J]. Intermetallics, 2016, 68: 5
|
92 |
Zhang Q S, Deng Y F, Zhang H F, et al. Cyclic softening of Zr55Al10Ni5Cu30 bulk amorphous alloy [J]. J. Mater. Sci. Lett., 2003, 22: 1731
|
93 |
Packard C E, Schuh C A. Initiation of shear bands near a stress concentration in metallic glass [J]. Acta Mater., 2007, 55: 5348
|
94 |
Wang G Y, Liaw P K, Yokoyama Y, et al. Evolution of shear bands and fatigue striations in a bulk metallic glass during fatigue [J]. Intermetallics, 2012, 23: 96
|
95 |
Wang X D, Qu R T, Wu S J, et al. Fatigue damage and fracture behavior of metallic glass under cyclic compression [J]. Mater. Sci. Eng., 2018, A717: 41
|
96 |
Wang X D, Qu R T, Liu Z Q, et al. Evolution of shear-band cracking in metallic glass under cyclic compression [J]. Mater. Sci. Eng., 2017, A696: 267
|
97 |
Wu F F, Zhang Z F, Shen J, et al. Shear deformation and plasticity of metallic glass under multiaxial loading [J]. Acta Mater., 2008, 56: 894
|
98 |
Qu R T, Stoica M, Eckert J, et al. Tensile fracture morphologies of bulk metallic glass [J]. J. Appl. Phys., 2010, 108: 063509
|
99 |
Liu Y, Wang Y M, Liu L. Fatigue crack propagation behavior and fracture toughness in a Ni-free ZrCuFeAlAg bulk metallic glass [J]. Acta Mater., 2015, 92: 209
|
100 |
Launey M E, Busch R, Kruzic J J. Effects of free volume changes and residual stresses on the fatigue and fracture behavior of a Zr-Ti-Ni-Cu-Be bulk metallic glass [J]. Acta Mater., 2008, 56: 500
|
101 |
Chen Q J, Shen J, Zhang D L, et al. Mechanical performance and fracture behavior of Fe41Co7Cr15Mo14Y2C15B6 bulk metallic glass [J]. J. Mater. Res., 2006, 22: 358
|
102 |
Qu R T, Tönnies D, Tian L, et al. Size-dependent failure of the strongest bulk metallic glass [J]. Acta Mater., 2019, 178: 249
|
103 |
Sammis C G, Ashby M F. The failure of brittle porous solids under compressive stress states [J]. Acta Metall., 1986, 34: 511
|
104 |
Zheng Q, Cheng S, Strader J H, et al. Critical size and strength of the best bulk metallic glass former in the Mg-Cu-Gd ternary system [J]. Scr. Mater., 2007, 56: 161
|
105 |
Wu F F, Zhang Z F, Mao S X. Size-dependent shear fracture and global tensile plasticity of metallic glasses [J]. Acta Mater., 2009, 57: 257
|
106 |
Han Z, Wu W F, Li Y, et al. An instability index of shear band for plasticity in metallic glasses [J]. Acta Mater., 2009, 57: 1367
|
107 |
Greer J R, De Hosson J T M. Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect [J]. Prog. Mater. Sci., 2011, 56: 654
|
108 |
Zheng X L, Wang H, Zheng M S, et al. Notch Strength and Notch Sensitivity of Materials: Fracture Criterion of Notched Elements [M]. Beijing: Science Press, 2008: 15
|
109 |
Lei X Q, Li C L, Shi X H, et al. Notch strengthening or weakening governed by transition of shear failure to normal mode fracture [J]. Sci. Rep., 2015, 5: 10537
|
110 |
Pan J, Wang Y X, Li Y. Ductile fracture in notched bulk metallic glasses [J]. Acta Mater., 2017, 136: 126
|
111 |
Yang G N, Qu R T, Xu G D, et al. Understanding the tensile fracture of deeply-notched metallic glasses [J]. Int. J. Solids Struct., 2020, 207: 70
|
112 |
Li Q S, Qu R T, Zhang Z F. Shear banding and fracture behaviors of a bulk metallic glass studied via in-situ bending experiments with notched and un-notched specimens [J]. Mater. Sci. Eng., 2020, A798: 140005
|
113 |
Qu R T, Zhang Z F. Failure surfaces of high-strength materials predicted by a universal failure criterion [J]. Int. J. Fract., 2018, 211: 237
|
114 |
Qu R T, Zhang Z F. A universal fracture criterion for high-strength materials [J]. Sci. Rep., 2013, 3: 1117
|
115 |
Qu R T, Eckert J, Zhang Z F. Tensile fracture criterion of metallic glass [J]. J. Appl. Phys., 2011, 109: 083544
|
116 |
Sha Z D, Pei Q X, Liu Z S, et al. Necking and notch strengthening in metallic glass with symmetric sharp-and-deep notches [J]. Sci. Rep., 2015, 5: 10797
|
117 |
Sha Z D, Pei Q X, Sorkin V, et al. On the notch sensitivity of CuZr metallic glasses [J]. Appl. Phys. Lett., 2013, 103: 081903
|
118 |
Gludovatz B, Demetriou M D, Floyd M, et al. Enhanced fatigue endurance of metallic glasses through a staircase-like fracture mechanism [J]. Proc. Natl. Acad. Sci. USA, 2013, 110: 18419
|
119 |
Song Z Q, He Q, Ma E, et al. Fatigue endurance limit and crack growth behavior of a high-toughness Zr61Ti2Cu25Al12 bulk metallic glass [J]. Acta Mater., 2015, 99: 165
|
120 |
Wang W H. Flow units: The “defects” of amorphous alloys [J]. Sci. Sin. Phys. Mech. Astron., 2014, 44: 396
|
120 |
汪卫华. 非晶中“缺陷”——流变单元研究 [J]. 中国科学: 物理学 力学 天文学, 2014, 44: 396
|
121 |
Ding J, Patinet S, Falk M L, et al. Soft spots and their structural signature in a metallic glass [J]. Proc. Natl. Acad. Sci. USA, 2014, 111: 14052
|
122 |
Murali P, Ramamurty U. Embrittlement of a bulk metallic glass due to sub-Tg annealing [J]. Acta Mater., 2005, 53: 1467
|
123 |
Sun Y H, Concustell A, Greer A L. Thermomechanical processing of metallic glasses: Extending the range of the glassy state [J]. Nat. Rev. Mater., 2016, 1: 16039
|
124 |
Pan J, Ivanov Y P, Zhou W H, et al. Strain-hardening and suppression of shear-banding in rejuvenated bulk metallic glass [J]. Nature, 2020, 578: 559
|
125 |
Das A, Dufresne E M, Maaß R. Structural dynamics and rejuvenation during cryogenic cycling in a Zr-based metallic glass [J]. Acta Mater., 2020, 196: 723
|
126 |
Li B S, Xie S H, Kruzic J J. Toughness enhancement and heterogeneous softening of a cryogenically cycled Zr-Cu-Ni-Al-Nb bulk metallic glass [J]. Acta Mater., 2019, 176: 278
|
127 |
Wang W H, Luo P. The dynamic behavior hidden in the long time scale of metallic glasses and its effect on the properties [J]. Acta Metall. Sin., 2018, 54: 1479
|
127 |
汪卫华, 罗 鹏. 金属玻璃中隐藏在长时间尺度下的动力学行为及其对性能的影响 [J]. 金属学报, 2018, 54: 1479
|
128 |
Ketov S V, Sun Y H, Nachum S, et al. Rejuvenation of metallic glasses by non-affine thermal strain [J]. Nature, 2015, 524: 200
|
129 |
Zhao L, Chan K C, Chen S H, et al. Tunable tensile ductility of metallic glasses with partially rejuvenated amorphous structures [J]. Acta Mater., 2019, 169: 122
|
130 |
Song K K, Han X L, Pauly S, et al. Rapid and partial crystallization to design ductile CuZr-based bulk metallic glass composites [J]. Mater. Des., 2018, 139: 132
|
131 |
Wang X D, Qu R T, Wu S J, et al. Improving fatigue property of metallic glass by tailoring the microstructure to suppress shear band formation [J]. Materialia, 2019, 7: 100407
|
132 |
Qu R T, Zhang Q S, Zhang Z F. Achieving macroscopic tensile plasticity of monolithic bulk metallic glass by surface treatment [J]. Scr. Mater., 2013, 68: 845
|
133 |
Qu R T, Zhao J X, Stoica M, et al. Macroscopic tensile plasticity of bulk metallic glass through designed artificial defects [J]. Mater. Sci. Eng., 2012, A534: 365
|
134 |
Zhao L, Han D X, Guan S, et al. Simultaneous improvement of plasticity and strength of metallic glasses by tailoring residual stress: Role of stress gradient on shear banding [J]. Mater. Des., 2021, 197: 109246
|
135 |
Sarac B, Schroers J. Designing tensile ductility in metallic glasses [J]. Nat. Commun., 2013, 4: 2158
|
136 |
Gao M, Dong J, Huan Y, et al. Macroscopic tensile plasticity by scalarizating stress distribution in bulk metallic glass [J]. Sci. Rep., 2016, 6: 21929
|
137 |
Feng S D, Li L, Chan K C, et al. Enhancing strength and plasticity by pre-introduced indent-notches in Zr36Cu64 metallic glass: A molecular dynamics simulation study [J]. J. Mater. Sci. Technol., 2020, 43: 119
|
138 |
Zhao J X, Wu F F, Qu R T, et al. Plastic deformability of metallic glass by artificial macroscopic notches [J]. Acta Mater., 2010, 58: 5420
|
139 |
Sha Z D, Teng Y, Poh L H, et al. Notch strengthening in nanoscale metallic glasses [J]. Acta Mater., 2019, 169: 147
|
140 |
Luo Y, Yang G N, Shao Y, et al. The effect of void defects on the shear band nucleation of metallic glasses [J]. Intermetallics, 2018, 94: 114
|
141 |
Chen S H, Yue T M, Tsui C P, et al. Flaw-induced plastic-flow dynamics in bulk metallic glasses under tension [J]. Sci. Rep., 2016, 6: 36130
|
142 |
Bui T X, Fang T H, Lee C I. Effects of flaw shape and size on fracture toughness and destructive mechanism inside Ni15Al70Co15 metallic glass [J]. Comput. Mater. Sci., 2020, 183: 109807
|
143 |
Chen H S, Wang T T. Mechanical properties of metallic glasses of Pd-Si-based alloys [J]. J. Appl. Phys., 1970, 41: 5338
|
144 |
Ren F, Ward L, Williams T, et al. Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments [J]. Sci. Adv., 2018, 4: eaaq1566
|
145 |
Wang Q, Jain A. A transferable machine-learning framework linking interstice distribution and plastic heterogeneity in metallic glasses [J]. Nat. Commun., 2019, 10: 5537
|
146 |
Tian L, Fan Y, Li L, et al. Identifying flow defects in amorphous alloys using machine learning outlier detection methods [J]. Scr. Mater., 2020, 186: 185
|
147 |
Qiao J C, Liu X D, Wang Q, et al. Fast secondary relaxation and plasticity initiation in metallic glasses [J]. Nat. Sci. Rev., 2018, 5: 616
|
148 |
Tönnies D, Samwer K, Derlet P M, et al. Rate-dependent shear-band initiation in a metallic glass [J]. Appl. Phys. Lett., 2015, 106: 171907
|
149 |
Klaumünzer D, Lazarev A, Maaß R, et al. Probing shear-band initiation in metallic glasses [J]. Phys. Rev. Lett., 2011, 107: 185502
|
150 |
Volkert C A, Minor A M. Focused ion beam microscopy and micromachining [J]. MRS Bull., 2007, 32: 389.
|
151 |
Tian L, Cheng Y Q, Shan Z W, et al. Approaching the ideal elastic limit of metallic glasses [J]. Nat. Commun., 2012, 3: 609
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|