Please wait a minute...
金属学报  2013, Vol. 49 Issue (8): 969-975    DOI: 10.3724/SP.J.1037.2013.00139
  论文 本期目录 | 过刊浏览 |
Cu56Hf27Ti17块体金属玻璃的缺口韧性
朱振东,徐坚
中国科学院金属研究所沈阳材料国家(联合)实验室, 沈阳 110016
Cu56Hf27Ti17 BULK METALLIC GLASS WITH HIGH FRACTURE TOUGHNESS
ZHU Zhendong, XU Jian
Shenyang National Laboratory for Materials Science, Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110016
引用本文:

朱振东,徐坚. Cu56Hf27Ti17块体金属玻璃的缺口韧性[J]. 金属学报, 2013, 49(8): 969-975.
ZHU Zhendong, XU Jian. Cu56Hf27Ti17 BULK METALLIC GLASS WITH HIGH FRACTURE TOUGHNESS[J]. Acta Metall Sin, 2013, 49(8): 969-975.

全文: PDF(775 KB)  
摘要: 

通过研究Cu-Hf-Ti三元合金的玻璃形成能力对合金成分的依赖性,优化出Cu56Hf27Ti17Cu57Hf27Ti16合金,其形成金属玻璃棒材的临界直径为5 mm.采用单边缺口试样测量的Cu56Hf27Ti17金属玻璃的缺口韧性KQ为(92±10) MPa·m1/2, 几乎是Cu49Hf42Al9金属玻璃(KQ=(56±9) MPa·m1/2)的一倍,是目前所知韧性最高的铜基块体金属玻璃. 相对于Cu49Hf42Al9金属玻璃,Cu56Hf27Ti17金属玻璃的高韧性与其高Poisson比(ν=0.361)和低剪切模量(G=38.6 GPa)关联. Cu56Hf27Ti17块体金属玻璃的高韧性表现为裂纹尖端形成大塑性区, 在裂纹萌生与扩展过程中,形成大尺寸剪切滑移区和脉纹花样区. Cu56Hf27Ti17Cu49Hf42Al9块体金属玻璃在缺口韧性上的差异表明,从Cu-Zr/Hf基合金中去除Al元素有利于金属玻璃的韧化.

关键词 铜合金金属玻璃断裂韧性弹性常数    
Abstract

As a sort of quasi-brittle materials, fracture toughness of bulk metallic glasses (BMGs) is of paramount importance for their engineering application. Among the BMG families, Cu-based BMGs are of interest due to their low cost, high strength and less brittleness. As indicated in previous work, the Cu49Hf42Al9 BMG exhibits a good combination of toughness and glass forming ability (GFA). Moreover, toughness of BMG significantly depends on alloy composition. In the Zr-Cu-Al system, it was suggested that increasing the Al content in the alloy does not favor to the plasticity of the glass. Then, it is expected that Al-free Cu-Hf-Ti BMGs may be tougher than the Cu49Hf42Al9 BMG. In addition, notched cylindrical samples were used for the toughness assessment in previous investigation, which probably introduce an overestimation in toughness in comparison with archival data of engineering materials. To obtain the glassy plate samples for toughness measurements to meet the ASTM E399 requirement, alloys with robust GFA is necessary. In this work, the composition dependence of GFA for ternary Cu-Hf-Ti alloys was revisited. The alloys with the optimal GFA are located around the Cu56Hf27Ti17 and Cu57Hf27Ti16. The critical diameter to form the BMG rods was determined to be 5 mm. Then, the Cu56Hf27Ti17 BMG plates of 2.5 mm in thickness can be fabricated as the specimens for toughness assessments. Using the single-edge notched specimen for three-point bending test, the notch toughness K Q of Cu56Hf27Ti17 BMG was determined to be(92±10) MPa·m1/2. It is nearly doubled with respect to the Cu49Hf42Al9 BMG (KQ=(56±9) MPa·m1/2).It means that the Cu56Hf27Ti17 BMG is the toughest among currently-available Cu-based BMGs. Such high toughness of Cu56Hf27Ti17 BMG also correlates with its moderate Poisson's ratio (ν=0.361) and low shear modulus (G=38.6 GPa). The enhanced toughness of Cu56Hf27Ti17 BMG is associated with the extended plastic zone size at the notch tip with the proliferation of shear banding events. The fact that the Cu56Hf27Ti17 superior to Cu49Hf42Al9 BMG in toughness seemingly supports that Al element has an unfavorable effect on the toughness of Cu-Zr/Hf-based BMGs.

Key wordsCu alloy    metallic glass    fracture toughness    elastic constant
收稿日期: 2013-03-28     
基金资助:

国家自然科学基金资助项目51171180

作者简介: 朱振东, 男, 1984年生, 博士生

[1] Greer A, Ma E.  MRS Bull, 2007; 32: 611

[2] Schuh C A, Hufnagel T C, Ramamurty U.  Acta Mater, 2007; 55: 4067
[3] Meyers M A, Chawla K K.  Mechanical Behavior of Materials. 2nd Ed., New York: Cambridge University Press, 2009: 404
[4] Xu J, Ramamurty U, Ma E.  JOM, 2010; 62: 10
[5] Demetriou M D, Launey M E, Garrett G, Schramm J P, Hofmann D C, Johnson W L,Ritchie R O.  Nat Mater, 2011; 10: 123
[6] He Q, Cheng Y Q, Ma E, Xu J.  Acta Mater, 2011; 59: 202
[7] He Q, Shang J K, Ma E, Xu J.  Acta Mater, 2012; 60: 4940
[8] Gu X J, Poon S J, Shiflet G J, Lewandowski J J.  Acta Mater, 2010; 58: 1708
[9] Schroers J, Johnson W L.  Phys Rev Lett, 2004; 93: 255506
[10] Jia P, Guo H, Li Y, Xu J, Ma E.  Scr Mater, 2006; 54: 2165
[11] Dai C L, Guo H, Shen Y, Li Y, Ma E, Xu J.  Scr Mater, 2006; 54: 1403
[12] Shen Y, Ma E, Xu J.  J Mater Sci Technol, 2008; 24: 149
[13] Inoue A, Zhang W, Zhang T, Kurosaka K.  J Mater Res, 2001; 16: 2836
[14] Figueroa I A, Davies H A, Todd I.  J Alloys Compd, 2007; 434-435: 164
[15] Choi-Yim H, Conner R D.  J Alloys Compd, 2008; 459: 160
[16] Jia P, Zhu Z D, Ma E, Xu J.  Scr Mater, 2009; 61: 137
[17] Cheng Y Q, Ma E, Sheng H W.  Phys Rev Lett, 2009; 102: 245501
[18] Zhang L, Cheng Y Q, Cao A J, Xu J, Ma E.  Acta Mater, 2009; 57: 1154
[19] Cheng Y Q, Sheng H W, Ma E.  Phys Rev, 2008; 78B: 014207
[20] Cheng Y Q, Cao A J, Ma E.  Acta Mater, 2009; 57: 3253
[21] Lewandowski J J, Wang W H, Greer A L.  Philos Mag Lett, 2005; 85: 77
[22] Lewandowski J J, Gu X J, Nouri A S, Poon S J, Shiflet G J.  Appl Phys Lett,2008; 92: 091918
[23] Conner R D, Rosakis A J, Johnson W L, Owen D M.  Scr Mater, 1997; 37: 1373
[24] Demetriou M D, Kaltenboeck G, Suh J Y, Garrett G, Floyd M, Crewdson C,
Hofmann D C, Kozachkov H, Wiest A, Schramm J P, Johnson W L.  Appl Phys Lett, 2009; 95: 041907
[25] Suh J Y, Conner R D, Kim C P, Demetriou M D, Johnson W L.  J Mater Res, 2010; 25: 982
[26] Lowhaphandu P, Lewandowski J J.  Scr Mater, 1998; 38: 1811
[27] Henann D L, Anand L.  Acta Mater, 2009; 57: 6057
[28] Kawashima A, Kurishita H, Kimura H, Zhang T, Inoue A.  Mater Trans, 2005; 46: 1725
[29] Chen H S, Krause J T, Coleman E.  J Non-Cryst Solids, 1975; 18: 157
[30] Wang S G, Shi L L, Xu J.  J Mater Res, 2011; 26: 923
[31] Zhu Z D, Jia P, Xu J.  Scr Mater, 2011; 64: 785
[32] Johnson W L, Samwer K.  Phys Rev Lett, 2005; 95: 195501
[33] He Q, Xu J.  J Mater Sci Technol, 2012; 28: 1109
[34] Johnson W L, Demetriou M D, Harmon J S, Lind M L, Samwer K.  MRS Bull, 2007; 32: 644
[35] Demetriou M D, Harmon J S, Tao M, Duan G, Samwer K, Johnson W L.  Phys Rev Lett, 2006; 97: 065502
[1] 陈凯旋, 李宗烜, 王自东, Demange Gilles, 陈晓华, 张佳伟, 吴雪华, Zapolsky Helena. Cu-2.0Fe合金等温处理过程中富Fe析出相的形态演变[J]. 金属学报, 2023, 59(12): 1665-1674.
[2] 谷瑞成, 张健, 张明阳, 刘艳艳, 王绍钢, 焦大, 刘增乾, 张哲峰. 三维互穿结构SiC晶须骨架增强镁基复合材料制备及其力学性能[J]. 金属学报, 2022, 58(7): 857-867.
[3] 胡晨, 潘帅, 黄明欣. 高强高韧异质结构温轧TWIP[J]. 金属学报, 2022, 58(11): 1519-1526.
[4] 陈瑞润, 陈德志, 王琪, 王墅, 周哲丞, 丁宏升, 傅恒志. Nb-Si基超高温合金及其定向凝固工艺的研究进展[J]. 金属学报, 2021, 57(9): 1141-1154.
[5] 彭吴擎亮, 李强, 常永勤, 王万景, 陈镇, 谢春意, 王纪超, 耿祥, 黄伶明, 周海山, 罗广南. 核聚变堆偏滤器热沉材料研究现状及展望[J]. 金属学报, 2021, 57(7): 831-844.
[6] 孙小钧, 何杰, 陈斌, 赵九洲, 江鸿翔, 张丽丽, 郝红日. Fe含量对Zr60Cu40-xFex相分离非晶合金组织结构、电阻性能和纳米压痕行为的影响[J]. 金属学报, 2021, 57(5): 675-683.
[7] 张倪侦, 马昕迪, 耿川, 穆永坤, 孙康, 贾延东, 黄波, 王刚. Ag元素添加对Cu-Zr-Al基金属玻璃纳米压痕行为的影响[J]. 金属学报, 2021, 57(4): 567-574.
[8] 蒋敏强, 高洋. 金属玻璃的结构年轻化及其对力学行为的影响[J]. 金属学报, 2021, 57(4): 425-438.
[9] 曹庆平, 吕林波, 王晓东, 蒋建中. 物理气相沉积制备金属玻璃薄膜及其力学性能的样品尺寸效应[J]. 金属学报, 2021, 57(4): 473-490.
[10] 杨群, 彭思旭, 卜庆周, 于海滨. 非晶态Ni80P20合金的玻璃转变和过冷液体性质[J]. 金属学报, 2021, 57(4): 553-558.
[11] 屈瑞涛, 王晓地, 吴少杰, 张哲峰. 金属玻璃的剪切带变形与断裂机制研究进展[J]. 金属学报, 2021, 57(4): 453-472.
[12] 管鹏飞, 孙胜君. 金属玻璃结构及其失稳的原子层次研究[J]. 金属学报, 2021, 57(4): 501-514.
[13] 曾桥石, 尹梓梁, 楼鸿波. 金属玻璃中的非晶多形态转变[J]. 金属学报, 2021, 57(4): 491-500.
[14] 张海军, 邱实, 孙志梅, 胡青苗, 杨锐. 无序β-Ti1-xNbx合金自由能及弹性性质的第一性原理计算:特殊准无序结构和相干势近似的比较[J]. 金属学报, 2020, 56(9): 1304-1312.
[15] 刘金来, 叶荔华, 周亦胄, 李金国, 孙晓峰. 一种单晶高温合金的弹性性能的各向异性[J]. 金属学报, 2020, 56(6): 855-862.