|
|
金属玻璃中的非晶多形态转变 |
曾桥石( ), 尹梓梁, 楼鸿波( ) |
北京高压科学研究中心 上海分中心 上海 201203 |
|
Polyamorphic Transitions in Metallic Glasses |
ZENG Qiaoshi( ), YIN Ziliang, LOU Hongbo( ) |
Center for High Pressure Science & Technology Advanced Research, Shanghai 201203, China |
引用本文:
曾桥石, 尹梓梁, 楼鸿波. 金属玻璃中的非晶多形态转变[J]. 金属学报, 2021, 57(4): 491-500.
Qiaoshi ZENG,
Ziliang YIN,
Hongbo LOU.
Polyamorphic Transitions in Metallic Glasses[J]. Acta Metall Sin, 2021, 57(4): 491-500.
1 |
Angell C A. Formation of glasses from liquids and biopolymers [J]. Science, 1995, 267: 1924
|
2 |
Inoue A. High strength bulk amorphous alloys with low critical cooling rates (Overview) [J]. Mater. Trans., JIM, 1995, 36: 866
|
3 |
Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys [J]. Acta Mater., 2000, 48: 279
|
4 |
Klement W, Willens R H, Duwez P O L. Non-crystalline structure in solidified gold-silicon alloys [J]. Nature, 1960, 187: 869
|
5 |
Chen H S. Thermodynamic considerations on the formation and stability of metallic glasses [J]. Acta Metall., 1974, 22: 1505
|
6 |
Drehman A J, Greer A L, Turnbull D. Bulk formation of a metallic glass: Pd40Ni40P20 [J]. Appl. Phys. Lett., 1982, 41: 716
|
7 |
Inoue A, Zhang T, Masumoto T. Al-La-Ni amorphous alloys with a wide supercooled liquid region [J]. Mater. Trans., JIM, 1989, 30: 965
|
8 |
Inoue A, Nakamura T, Nishiyama N, et al. Mg-Cu-Y bulk amorphous alloys with high tensile strength produced by a high-pressure die casting method [J]. Mater. Trans., JIM, 1992, 33: 937
|
9 |
Peker A, Johnson W L. A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10. 0Be22.5 [J]. Appl. Phys. Lett., 1993, 63: 2342
|
10 |
Johnson W L. Bulk glass-forming metallic alloys: Science and technology [J]. MRS Bull., 1999, 24: 42
|
11 |
Joseph S, Shiflet G J, Ponnambalam V, et al. Synthesis and properties of high-manganese iron-based bulk amorphous metals as non-ferromagnetic amorphous steel alloys [J]. MRS Online Proc. Libr., 2002, 754: CC1.2
|
12 |
Wang W H, Dong C, Shek C H. Bulk metallic glasses [J]. Mater. Sci. Eng., 2004, R44: 45
|
13 |
Shen J, Chen Q J, Sun J F, et al. Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy [J]. Appl. Phys. Lett., 2005, 86: 151907
|
14 |
Xu Y K, Ma H, Xu J, et al. Mg-based bulk metallic glass composites with plasticity and gigapascal strength [J]. Acta Mater., 2005, 53: 1857
|
15 |
Wang W H. Roles of minor additions in formation and properties of bulk metallic glasses [J]. Prog. Mater. Sci., 2007, 52: 540
|
16 |
Haruyama O, Nakayama Y, Wada R, et al. Volume and enthalpy relaxation in Zr55Cu30Ni5Al10 bulk metallic glass [J]. Acta Mater., 2010, 58: 1829
|
17 |
Zhang Q S, Zhang W, Inoue A. Unusual glass-forming ability of new Zr-Cu-based bulk glassy alloys containing an immiscible element pair [J]. Mater. Trans., 2008, 49: 2743
|
18 |
Zhang W, Zhang Q, Inoue A. Synthesis and mechanical properties of new Cu-Zr-based glassy alloys with high glass-forming ability [J]. Adv. Eng. Mater., 2008, 10: 1034
|
19 |
Gilbert C J, Ritchie R O, Johnson W L. Fracture toughness and fatigue-crack propagation in a Zr-Ti-Ni-Cu-Be bulk metallic glass [J]. Appl. Phys. Lett., 1997, 71: 476
|
20 |
Inoue A, Shen B L, Koshiba H, et al. Cobalt-based bulk glassy alloy with ultrahigh strength and soft magnetic properties [J]. Nat. Mater., 2003, 2: 661
|
21 |
Ma H, Xu J, Ma E. Mg-based bulk metallic glass composites with plasticity and high strength [J]. Appl. Phys. Lett., 2003, 83: 2793
|
22 |
Liu Y H, Wang G, Pan M X, et al. Deformation behaviors and mechanism of Ni-Co-Nb-Ta bulk metallic glasses with high strength and plasticity [J]. J. Mater. Res., 2007, 22: 869
|
23 |
Zhang T, Liu F J, Pang S J, et al. Ductile Fe-based bulk metallic glass with good soft-magnetic properties [J]. Mater. Trans., 2007, 48: 1157
|
24 |
Hofmann D C, Suh J Y, Wiest A, et al. Designing metallic glass matrix composites with high toughness and tensile ductility [J]. Nature, 2008, 451: 1085
|
25 |
Wang J F, Li R, Xiao R J, et al. Compressibility and hardness of Co-based bulk metallic glass: A combined experimental and density functional theory study [J]. Appl. Phys. Lett., 2011, 99: 151911
|
26 |
Wang W H. The elastic properties, elastic models and elastic perspectives of metallic glasses [J]. Prog. Mater. Sci., 2012, 57: 487
|
27 |
Ma J, Zhang X Y, Wang D P, et al. Superhydrophobic metallic glass surface with superior mechanical stability and corrosion resistance [J]. Appl. Phys. Lett., 2014, 104: 173701
|
28 |
Madge S V, Caron A, Gralla R, et al. Novel W-based metallic glass with high hardness and wear resistance [J]. Intermetallics, 2014, 47: 6
|
29 |
Xu Y F, Wang W K. Formation of a new high pressure phase: fcc Pd40Ni40P20 solid solution [J]. J. Appl. Phys., 1991, 69: 3537
|
30 |
Wang W H, He D W, Zhao D Q, et al. Nanocrystallization of ZrTiCuNiBeC bulk metallic glass under high pressure [J]. Appl. Phys. Lett., 1999, 75: 2770
|
31 |
Sun L L, Kikegawa T, Wu Q, et al. Unusual transition phenomenon in Zr-based bulk metallic glass upon heating at high pressure [J]. Appl. Phys. Lett., 2002, 80: 3087
|
32 |
Sun L L, Wu T J, Wang W K, et al. Phase transition in Pd40Ni10-Cu30P20 bulk metallic glass under HP & HT [J]. Sci. China, 2005, 48G: 716
|
33 |
Jin H J, Gu X J, Wen P, et al. Pressure effect on the structural relaxation and glass transition in metallic glasses [J]. Acta Mater., 2003, 51: 6219
|
34 |
Xue R J, Zhao L Z, Shi C L, et al. Enhanced kinetic stability of a bulk metallic glass by high pressure [J]. Appl. Phys. Lett., 2016, 109: 221904
|
35 |
Wang C, Yang Z Z, Ma T, et al. High stored energy of metallic glasses induced by high pressure [J]. Appl. Phys. Lett., 2017, 110: 111901
|
36 |
Ge T P, Wang C, Tan J, et al. Unusual energy state evolution in Ce-based metallic glass under high pressure [J]. J. Appl. Phys., 2017, 121: 205109
|
37 |
Yamada R, Shibazaki Y, Abe Y, et al. Unveiling a new type of ultradense anomalous metallic glass with improved strength and ductility through a high-pressure heat treatment [J]. NPG Asia Mater., 2019, 11: 72
|
38 |
Dmowski W, Yoo G H, Gierlotka S, et al. High pressure quenched glasses: Unique structures and properties [J]. Sci. Rep., 2020, 10: 9497
|
39 |
Shen G Y, Mao H K. High-pressure studies with X-rays using diamond anvil cells [J]. Rep. Prog. Phys., 2017, 80: 016101
|
40 |
Mao H K, Chen B, Chen J H, et al. Recent advances in high-pressure science and technology [J]. Matter Radiat. Extremes, 2016, 1: 59
|
41 |
Bridgman P W. High pressure polymorphism of iron [J]. J. Appl. Phys., 1956, 27: 659
|
42 |
Poole P H, Grande T, Angell C A, et al. Polymorphic phase transitions in liquids and glasses [J]. Science, 1997, 275: 322
|
43 |
Moulton B, Zaworotko M J. From molecules to crystal engineering: Supramolecular isomerism and polymorphism in network solids [J]. Chem. Rev., 2001, 101: 1629
|
44 |
Ding Y, Ahuja R, Shu J F, et al. Structural phase transition of vanadium at 69 GPa [J]. Phys. Rev. Lett., 2007, 98: 085502
|
45 |
Poole P H, Grande T, Sciortino F, et al. Amorphous polymorphism [J]. Comput. Mater. Sci., 1995, 4: 373
|
46 |
Morishita T. High density amorphous form and polyamorphic transformations of silicon [J]. Phys. Rev. Lett., 2004, 93: 055503
|
47 |
Mishima O, Calvert L D, Whalley E. ‘Melting ice’ I at 77 K and 10 kbar: A new method of making amorphous solids [J]. Nature, 1984, 310: 393
|
48 |
Tulk C A, Hart R, Klug D D, et al. Adding a length scale to the polyamorphic ice debate [J]. Phys. Rev. Lett., 2006, 97: 115503
|
49 |
Mishima O, Suzuki Y. Propagation of the polyamorphic transition of ice and the liquid-liquid critical point [J]. Nature, 2002, 419: 599
|
50 |
Itie J P, Polian A, Calas G, et al. Pressure-induced coordination changes in crystalline and vitreous GeO2 [J]. Phys. Rev. Lett., 1989, 63: 398
|
51 |
Meade C, Hemley R J, Mao H K. High-pressure X-ray diffraction of SiO2 glass [J]. Phys. Rev. Lett., 1992, 69: 1387
|
52 |
McMillan P F. Polyamorphic transformations in liquids and glasses [J]. J. Mater. Chem., 2004, 14: 1506
|
53 |
Crichton W A, Mezouar M, Grande T, et al. Breakdown of intermediate-range order in liquid GeSe2 at high pressure [J]. Nature, 2001, 414: 622
|
54 |
Mei Q, Benmore C J, Hart R T, et al. Topological changes in glassy GeSe2 at pressures up to 9.3 GPa determined by high-energy X-ray and neutron diffraction measurements [J]. Phys. Rev., 2006, 74B: 014203
|
55 |
McMillan P F, Wilson M, Daisenberger D, et al. A density-driven phase transition between semiconducting and metallic polyamorphs of silicon [J]. Nat. Mater., 2005, 4: 680
|
56 |
Bhat M H, Molinero V, Soignard E, et al. Vitrification of a monatomic metallic liquid [J]. Nature, 2007, 448: 787
|
57 |
Sheng H W, Luo W K, Alamgir F M, et al. Atomic packing and short-to-medium-range order in metallic glasses [J]. Nature, 2006, 439: 419
|
58 |
Miracle D B. A structural model for metallic glasses [J]. Nat. Mater., 2004, 3: 697
|
59 |
Sheng H W, Liu H Z, Cheng Y Q, et al. Polyamorphism in a metallic glass [J]. Nat. Mater., 2007, 6: 192
|
60 |
Zeng Q S, Li Y C, Feng C M, et al. Anomalous compression behavior in lanthanum/cerium-based metallic glass under high pressure [J]. Proc. Natl. Acad. Sci. USA, 2007, 104: 13565
|
61 |
Yavari A R, Moulec A L, Inoue A, et al. Excess free volume in metallic glasses measured by X-ray diffraction [J]. Acta Mater., 2005, 53: 1611
|
62 |
Ma D, Stoica A D, Wang X L. Power-law scaling and fractal nature of medium-range order in metallic glasses [J]. Nat. Mater., 2009, 8: 30
|
63 |
Zeng Q S, Lin Y, Liu Y J, et al. General 2.5 power law of metallic glasses [J]. Proc. Natl. Acad. Sci. USA, 2016, 113: 1714
|
64 |
Belhadi L, Decremps F, Pascarelli S, et al. Polyamorphism in cerium based bulk metallic glasses: Electronic and structural properties under pressure and temperature by X-ray absorption techniques [J]. Appl. Phys. Lett., 2013, 103: 111905
|
65 |
Lin C L, Ahmad A S, Lou H B, et al. Pressure-induced amorphous-to-amorphous reversible transformation in Pr75Al25 [J]. J. Appl. Phys., 2013, 114: 213516
|
66 |
Khan S A, Wang X D, Ahmad A S, et al. Temperature- and pressure-induced polyamorphic transitions in AuCuSi alloy [J]. J. Phys. Chem., 2019, 123C: 20342
|
67 |
Duarte M J, Bruna P, Pineda E, et al. Polyamorphic transitions in Ce-based metallic glasses by synchrotron radiation [J]. Phys. Rev., 2011, 84B: 224116
|
68 |
Zeng Q S, Fang Y Z, Lou H B, et al. Low-density to high-density transition in Ce75Al23Si2 metallic glass [J]. J. Phys.: Condens. Matter, 2010, 22: 375404
|
69 |
Wang Y Y, Zhang P P, Li Q, et al. Structural evolution of heavy rare earth-based metal glass under high pressure [J]. J. Phys.: Condens. Matter, 2020, 33: 035405
|
70 |
Wang Y Y, Dong X, Song X H, et al. Reversible polyamorphic transitions in Ce65.5Al10Cu22.5Co2 metallic glass [J]. Mater. Lett., 2016, 162: 203
|
71 |
Soderlind P. Theory of the crystal structures of cerium and the light actinides [J]. Adv. Phys., 1998, 47: 959
|
72 |
Shick A B, Pickett W E, Liechtenstein A I. Ground and metastable states in γ-Ce from correlated band theory [J]. J. Electron Spectrosc. Relat. Phenom., 2001, 114-116: 753
|
73 |
Lee S K, Eng P J, Mao H K, et al. Structure of alkali borate glasses at high pressure: B and Li K-edge inelastic X-ray scattering study [J]. Phys. Rev. Lett., 2007, 98: 105502
|
74 |
Zeng Q S, Ding Y, Mao W L, et al. Origin of pressure-induced polyamorphism in Ce75Al25 metallic glass [J]. Phys. Rev. Lett., 2010, 104: 105702
|
75 |
Allen J W, Martin R M. Kondo volume collapse and the γ→α transition in cerium [J]. Phys. Rev. Lett., 1982, 49: 1106
|
76 |
Yavari A R. The changing faces of disorder [J]. Nat. Mater., 2007, 6: 181
|
77 |
Lipp M J, Jackson D, Cynn H, et al. Thermal signatures of the kondo volume collapse in cerium [J]. Phys. Rev. Lett., 2008, 101: 165703
|
78 |
Luo Q, Garbarino G, Sun B A, et al. Hierarchical densification and negative thermal expansion in Ce-based metallic glass under high pressure [J]. Nat. Commun., 2015, 6: 5703
|
79 |
Decremps F, Morard G, Garbarino G, et al. Polyamorphism of a Ce-based bulk metallic glass by high-pressure and high-temperature density measurements [J]. Phys. Rev., 2016, 93B: 054209
|
80 |
Zeng Q S, Zeng Z D, Lou H B, et al. Pressure-induced elastic anomaly in a polyamorphous metallic glass [J]. Appl. Phys. Lett., 2017, 110: 221902
|
81 |
Li G, Wang Y Y, Liaw P K, et al. Electronic structure inheritance and pressure-induced polyamorphism in lanthanide-based metallic glasses [J]. Phys. Rev. Lett., 2012, 109: 125501
|
82 |
Hua H, Vohra Y K, Akella J, et al. Theoretical and experimental studies on gadolinium at ultra high pressure [J]. Rev. High Pressure Sci. Technol., 1998, 7: 233
|
83 |
Errandonea D, Boehler R, Schwager B, et al. Structural studies of gadolinium at high pressure and temperature [J]. Phys. Rev., 2007, 75B: 014103
|
84 |
Bradley J A, Moore K T, Lipp M J, et al. 4f electron delocalization and volume collapse in praseodymium metal [J]. Phys. Rev., 2012, 85B: 100102
|
85 |
Chesnut G N, Vohra Y K. Phase transformations and equation of state of praseodymium metal to 103 GPa [J]. Phys. Rev., 2000, 62B: 2965
|
86 |
Li G, Jing Q, Xu T, et al. Preparation of Zr60Ni21Al19 bulk metallic glass and compression behavior under high pressure [J]. J. Mater. Res., 2011, 23: 2346
|
87 |
Stemshorn A K, Vohra Y K. Structural stability and compressibility of group IV transition metals-based bulk metallic glasses under high pressure [J]. J. Appl. Phys., 2009, 106: 046101
|
88 |
Mattern N, Bednarcik J, Liermann H P, et al. Structural behaviour of Pd40Cu30Ni10P20 metallic glass under high pressure [J]. Intermetallics, 2013, 38: 9
|
89 |
Lou H B, Xiong L H, Ahmad A S, et al. Atomic structure of Pd81Si19 glassy alloy under high pressure [J]. Acta Mater., 2014, 81: 420
|
90 |
Li L L, Wang L H, Li R F, et al. Constant real-space fractal dimensionality and structure evolution in Ti62Cu38 metallic glass under high pressure [J]. Phys. Rev., 2016, 94B: 184201
|
91 |
Li G, Li Y C, Jiang Z K, et al. Elasticity, thermal expansion and compressive behavior of Mg65Cu25Tb10 bulk metallic glass [J]. J. Non-Cryst. Solids, 2009, 355: 521
|
92 |
Wang Y Y, Zhao W, Li G, et al. Pressure-induced polyamorphic transitions in ytterbium-based bulk metallic glasses [J]. Mater. Lett., 2013, 110: 184
|
93 |
Zhao W, Wang Y Y, Liu R P, et al. High compressibility of rare earth-based bulk metallic glasses [J]. Appl. Phys. Lett., 2013, 102: 031903
|
94 |
Wang Y Y, Dong X, Song X H, et al. The effect of composition on pressure-induced polyamorphism in metallic glasses [J]. Mater. Lett., 2017, 192: 142
|
95 |
Li L L, Wang L H, Li R F, et al. Pressure-induced polyamorphism in lanthanide-solute metallic glasses [J]. Phys. Status Solidi (RRL): Rapid Res. Lett., 2017, 11: 1700078
|
96 |
Sheng H W, Ma E, Liu H Z, et al. Pressure tunes atomic packing in metallic glass [J]. Appl. Phys. Lett., 2006, 88: 171906
|
97 |
Lou H B, Fang Y K, Zeng Q S, et al. Pressure-induced amorphous-to-amorphous configuration change in Ca-Al metallic glasses [J]. Sci. Rep., 2012, 2: 376
|
98 |
Wu M, Lou H B, Tse J S, et al. Pressure-induced polyamorphism in a main-group metallic glass [J]. Phys. Rev., 2016, 94B: 054201
|
99 |
Du Q, Liu X J, Zeng Q S, et al. Polyamorphic transition in a transition metal based metallic glass under high pressure [J]. Phys. Rev., 2019, 99B: 014208
|
100 |
Zhang L J, Sun F, Hong X G, et al. Pressure-induced polyamorphism by quantitative structure factor and pair distribution function analysis in two Ce-based metallic glasses [J]. J. Alloys Compd., 2017, 695: 1180
|
101 |
Dziegielewski P, Antonowicz J, Pietnoczka A, et al. Pressure-induced transformations in Ce-Al metallic glasses: The role of stiffness of interatomic pairs [J]. J. Alloys Compd., 2018, 757: 484
|
102 |
Li L L, Luo Q, Li R F, et al. Polyamorphism in Yb-based metallic glass induced by pressure [J]. Sci. Rep., 2017, 7: 46762
|
103 |
Liu X R, Hong S M. Evidence for a pressure-induced phase transition of amorphous to amorphous in two lanthanide-based bulk metallic glasses [J]. Appl. Phys. Lett., 2007, 90: 251903
|
104 |
Zeng Q S, Struzhkin V V, Fang Y Z, et al. Properties of polyamorphous Ce75Al25 metallic glasses [J]. Phys. Rev., 2010, 82B: 054111
|
105 |
Lou H B, Zeng Z D, Zhang F, et al. Two-way tuning of structural order in metallic glasses [J]. Nat. Commun., 2020, 11: 314
|
106 |
Zhang L J, Wang J L, Tang F, et al. Pressure-induced polyamorphism in Nd60Fe30Al10 and Ce70Al10Cu20 metallic glasses by high-energy X-ray diffraction and electrical resistance measurements [J]. High Pressure Res., 2017, 37: 11
|
107 |
Zhang B, Wang R J, Wang W H. Response of acoustic and elastic properties to pressure and crystallization of Ce-based bulk metallic glass [J]. Phys. Rev., 2005, 72B: 104205
|
108 |
Yu P, Wang R J, Zhao D Q, et al. Anomalous temperature dependent elastic moduli of Ce-based bulk metallic glass at low temperatures [J]. Appl. Phys. Lett., 2007, 91: 201911
|
109 |
Yu P, Chan K C, Chen W, et al. Low-temperature mechanical properties of Ce68Al10Cu20Co2 bulk metallic glass [J]. Philos. Mag. Lett., 2011, 91: 70
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|