Please wait a minute...
金属学报  2021, Vol. 57 Issue (4): 491-500    DOI: 10.11900/0412.1961.2020.00465
  综述 本期目录 | 过刊浏览 |
金属玻璃中的非晶多形态转变
曾桥石(), 尹梓梁, 楼鸿波()
北京高压科学研究中心 上海分中心 上海 201203
Polyamorphic Transitions in Metallic Glasses
ZENG Qiaoshi(), YIN Ziliang, LOU Hongbo()
Center for High Pressure Science & Technology Advanced Research, Shanghai 201203, China
引用本文:

曾桥石, 尹梓梁, 楼鸿波. 金属玻璃中的非晶多形态转变[J]. 金属学报, 2021, 57(4): 491-500.
Qiaoshi ZENG, Ziliang YIN, Hongbo LOU. Polyamorphic Transitions in Metallic Glasses[J]. Acta Metall Sin, 2021, 57(4): 491-500.

全文: PDF(1610 KB)   HTML
摘要: 

由于独特的无方向性金属键“无序”密堆而成的原子结构,金属玻璃能够兼具传统玻璃和晶态金属2者的特性,拥有一系列优异的物理、化学和机械性能,被认为具有广阔的应用前景;同时金属玻璃也是研究非平衡无序体系基础科学问题的一个特殊模型,因此获得了广泛的关注。材料相变的研究对于深入理解其原子结构,并实现结构和性能的调控有重要意义。根据过去对非晶多形态的理解和认识,金属玻璃由于其高度致密的结构,在很长时间内被认为不可能具有非晶多形态转变。近年来,随着高压技术与同步辐射X射线原位探测技术的结合,金属玻璃中的非晶多形态转变现象被陆续发现;金属玻璃非晶多形态现象、机理以及伴随相变的各种性能变化得到了较广泛研究。本文简单总结了关于金属玻璃中压力诱导非晶多形态转变研究的已有进展,及其对金属玻璃结构和性能调控的影响。

关键词 金属玻璃非晶多形态转变高压技术同步辐射X射线技术    
Abstract

Metallic glasses possess densely packed and disordered atomic structures linked by non-directional metallic bonds. Within these structures, the superior properties of conventional glasses and crystalline metals can be combined with excellent physical, chemical, and mechanical properties for widespread applications. Metallic glasses also offer a unique model system for fundamental studies on amorphous materials. For these reasons, they have attracted global interest. Phase-transition studies can deepen people's understanding of the atomic structures of materials and can realize materials with tunable properties. The polyamorphic transitions in conventional amorphous materials are not expected in metallic glasses because the latter are already densely packed. However, in situ high-pressure synchrotron X-ray probing techniques have recently detected polyamorphic transitions in metallic glasses. This new phenomenon, its underlying mechanism, and the related property changes have recently sparked much excitement. This paper reviews the recent progress in polyamorphic transitions in metallic glasses and the influence of such transitions on their atomic structure and properties.

Key wordsmetallic glass    polyamorphic transition    high-pressure technique    synchrotron X-ray technique
收稿日期: 2020-11-18     
ZTFLH:  TG139.8  
基金资助:国家自然科学基金项目(51871054)
图1  铈基金属玻璃在高压下的不连贯体积和体模量变化[59,60](a) specific volume versus pressure for Ce55Al45 metallic glass (P—pressure, V—volume, LDA—low-density amorphous, U—the Hubbard term. Four different symbols represent four different in situ XRD runs on four different samples, where the open symbols are for compression, and the solid symbols are for decompression. The equation of state (EOS) predicted using first-principles calculations for different f-electron behaviours are also shown: the upper and lower line represent the calculation assuming 4f localized and delocalization, respectively. For clarity, errors bars are shown only for one set of the data)[59](b) bulk modulus versus pressure obtained by in situ high-pressure XRD on the La32Ce32Al16Ni5Cu15 bulk metallic glass (A distinct break of bulk modulus occurs at 14 GPa, and the slopes below and above 14 GPa are different within the experimental uncertainty)[60]
图2  Ce68Al10Cu20Co2金属玻璃体积随压力的变化关系[63](a) 3D renderings of reconstructed tomographic data of Ce68Al10Cu20Co2 metallic glass (MG) at different pressures(b) The volume change of Ce68Al10Cu20Co2 MG through the polyamorphic transition (Relative volume change (V/V0) obtained by TXM (solid red balls) as a function of pressure compared with the power law calculations of q1 (2.5 power law: blue diamonds, 3.0 power law: green squares). The dashed lines represent fitting using the second-order Birch-Murnaghan isothermal equation of state (BM-EOS). V—volume, V0—volume at 0 GPa, q1—peak position of the first sharp diffraction peak, q10—peak position of the first sharp diffraction peak at 0 GPa)
图3  Ce75Al25金属玻璃多形态转变的电子结构起因[74](a) inverse main diffraction peak positions 2π/Q1 of Ce75Al25 metallic glass as a function of pressure (Two different states, low density amorphous (dashed black line) and high density amorphous (dashed red line) along with a transition region from about 1.5 to 5.0 GPa can be identified. The data are smooth owing to the hydrostatic pressure conditions, and the error for experimental data are smaller than the symbol size. Q1—peak position of the first sharp diffraction peak)(b) in situ high-pressure Ce L3-edge X-ray absorption spectroscopy (XAS) spectra of Ce75Al25 metallic glass (The arrows point to the 4f0 and 4f1 components. The appearance of the 4f0 feature indicates the delocalization of 4f electron, and coincides with the volume collapse in XRD results. 4f0—itinerant 4f electron state, 4f1—localized 4f electron state, E0— incident energy)
图4  La43.4Pr18.6Al14Cu24金属玻璃的差分结构因子和差分对分布函数[95]
图5  Yb62.5Zn15Mg17.5Cu5金属玻璃的电阻随压力的变化关系[102]
图6  Ce68Al10Cu20Co2金属玻璃的弹性常数和Poisson比随压力的变化[80]
图7  Ce75Al25和La75Al25 2种金属玻璃的晶化温度随压力的变化规律对比[104]
1 Angell C A. Formation of glasses from liquids and biopolymers [J]. Science, 1995, 267: 1924
2 Inoue A. High strength bulk amorphous alloys with low critical cooling rates (Overview) [J]. Mater. Trans., JIM, 1995, 36: 866
3 Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys [J]. Acta Mater., 2000, 48: 279
4 Klement W, Willens R H, Duwez P O L. Non-crystalline structure in solidified gold-silicon alloys [J]. Nature, 1960, 187: 869
5 Chen H S. Thermodynamic considerations on the formation and stability of metallic glasses [J]. Acta Metall., 1974, 22: 1505
6 Drehman A J, Greer A L, Turnbull D. Bulk formation of a metallic glass: Pd40Ni40P20 [J]. Appl. Phys. Lett., 1982, 41: 716
7 Inoue A, Zhang T, Masumoto T. Al-La-Ni amorphous alloys with a wide supercooled liquid region [J]. Mater. Trans., JIM, 1989, 30: 965
8 Inoue A, Nakamura T, Nishiyama N, et al. Mg-Cu-Y bulk amorphous alloys with high tensile strength produced by a high-pressure die casting method [J]. Mater. Trans., JIM, 1992, 33: 937
9 Peker A, Johnson W L. A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10. 0Be22.5 [J]. Appl. Phys. Lett., 1993, 63: 2342
10 Johnson W L. Bulk glass-forming metallic alloys: Science and technology [J]. MRS Bull., 1999, 24: 42
11 Joseph S, Shiflet G J, Ponnambalam V, et al. Synthesis and properties of high-manganese iron-based bulk amorphous metals as non-ferromagnetic amorphous steel alloys [J]. MRS Online Proc. Libr., 2002, 754: CC1.2
12 Wang W H, Dong C, Shek C H. Bulk metallic glasses [J]. Mater. Sci. Eng., 2004, R44: 45
13 Shen J, Chen Q J, Sun J F, et al. Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy [J]. Appl. Phys. Lett., 2005, 86: 151907
14 Xu Y K, Ma H, Xu J, et al. Mg-based bulk metallic glass composites with plasticity and gigapascal strength [J]. Acta Mater., 2005, 53: 1857
15 Wang W H. Roles of minor additions in formation and properties of bulk metallic glasses [J]. Prog. Mater. Sci., 2007, 52: 540
16 Haruyama O, Nakayama Y, Wada R, et al. Volume and enthalpy relaxation in Zr55Cu30Ni5Al10 bulk metallic glass [J]. Acta Mater., 2010, 58: 1829
17 Zhang Q S, Zhang W, Inoue A. Unusual glass-forming ability of new Zr-Cu-based bulk glassy alloys containing an immiscible element pair [J]. Mater. Trans., 2008, 49: 2743
18 Zhang W, Zhang Q, Inoue A. Synthesis and mechanical properties of new Cu-Zr-based glassy alloys with high glass-forming ability [J]. Adv. Eng. Mater., 2008, 10: 1034
19 Gilbert C J, Ritchie R O, Johnson W L. Fracture toughness and fatigue-crack propagation in a Zr-Ti-Ni-Cu-Be bulk metallic glass [J]. Appl. Phys. Lett., 1997, 71: 476
20 Inoue A, Shen B L, Koshiba H, et al. Cobalt-based bulk glassy alloy with ultrahigh strength and soft magnetic properties [J]. Nat. Mater., 2003, 2: 661
21 Ma H, Xu J, Ma E. Mg-based bulk metallic glass composites with plasticity and high strength [J]. Appl. Phys. Lett., 2003, 83: 2793
22 Liu Y H, Wang G, Pan M X, et al. Deformation behaviors and mechanism of Ni-Co-Nb-Ta bulk metallic glasses with high strength and plasticity [J]. J. Mater. Res., 2007, 22: 869
23 Zhang T, Liu F J, Pang S J, et al. Ductile Fe-based bulk metallic glass with good soft-magnetic properties [J]. Mater. Trans., 2007, 48: 1157
24 Hofmann D C, Suh J Y, Wiest A, et al. Designing metallic glass matrix composites with high toughness and tensile ductility [J]. Nature, 2008, 451: 1085
25 Wang J F, Li R, Xiao R J, et al. Compressibility and hardness of Co-based bulk metallic glass: A combined experimental and density functional theory study [J]. Appl. Phys. Lett., 2011, 99: 151911
26 Wang W H. The elastic properties, elastic models and elastic perspectives of metallic glasses [J]. Prog. Mater. Sci., 2012, 57: 487
27 Ma J, Zhang X Y, Wang D P, et al. Superhydrophobic metallic glass surface with superior mechanical stability and corrosion resistance [J]. Appl. Phys. Lett., 2014, 104: 173701
28 Madge S V, Caron A, Gralla R, et al. Novel W-based metallic glass with high hardness and wear resistance [J]. Intermetallics, 2014, 47: 6
29 Xu Y F, Wang W K. Formation of a new high pressure phase: fcc Pd40Ni40P20 solid solution [J]. J. Appl. Phys., 1991, 69: 3537
30 Wang W H, He D W, Zhao D Q, et al. Nanocrystallization of ZrTiCuNiBeC bulk metallic glass under high pressure [J]. Appl. Phys. Lett., 1999, 75: 2770
31 Sun L L, Kikegawa T, Wu Q, et al. Unusual transition phenomenon in Zr-based bulk metallic glass upon heating at high pressure [J]. Appl. Phys. Lett., 2002, 80: 3087
32 Sun L L, Wu T J, Wang W K, et al. Phase transition in Pd40Ni10-Cu30P20 bulk metallic glass under HP & HT [J]. Sci. China, 2005, 48G: 716
33 Jin H J, Gu X J, Wen P, et al. Pressure effect on the structural relaxation and glass transition in metallic glasses [J]. Acta Mater., 2003, 51: 6219
34 Xue R J, Zhao L Z, Shi C L, et al. Enhanced kinetic stability of a bulk metallic glass by high pressure [J]. Appl. Phys. Lett., 2016, 109: 221904
35 Wang C, Yang Z Z, Ma T, et al. High stored energy of metallic glasses induced by high pressure [J]. Appl. Phys. Lett., 2017, 110: 111901
36 Ge T P, Wang C, Tan J, et al. Unusual energy state evolution in Ce-based metallic glass under high pressure [J]. J. Appl. Phys., 2017, 121: 205109
37 Yamada R, Shibazaki Y, Abe Y, et al. Unveiling a new type of ultradense anomalous metallic glass with improved strength and ductility through a high-pressure heat treatment [J]. NPG Asia Mater., 2019, 11: 72
38 Dmowski W, Yoo G H, Gierlotka S, et al. High pressure quenched glasses: Unique structures and properties [J]. Sci. Rep., 2020, 10: 9497
39 Shen G Y, Mao H K. High-pressure studies with X-rays using diamond anvil cells [J]. Rep. Prog. Phys., 2017, 80: 016101
40 Mao H K, Chen B, Chen J H, et al. Recent advances in high-pressure science and technology [J]. Matter Radiat. Extremes, 2016, 1: 59
41 Bridgman P W. High pressure polymorphism of iron [J]. J. Appl. Phys., 1956, 27: 659
42 Poole P H, Grande T, Angell C A, et al. Polymorphic phase transitions in liquids and glasses [J]. Science, 1997, 275: 322
43 Moulton B, Zaworotko M J. From molecules to crystal engineering: Supramolecular isomerism and polymorphism in network solids [J]. Chem. Rev., 2001, 101: 1629
44 Ding Y, Ahuja R, Shu J F, et al. Structural phase transition of vanadium at 69 GPa [J]. Phys. Rev. Lett., 2007, 98: 085502
45 Poole P H, Grande T, Sciortino F, et al. Amorphous polymorphism [J]. Comput. Mater. Sci., 1995, 4: 373
46 Morishita T. High density amorphous form and polyamorphic transformations of silicon [J]. Phys. Rev. Lett., 2004, 93: 055503
47 Mishima O, Calvert L D, Whalley E. ‘Melting ice’ I at 77 K and 10 kbar: A new method of making amorphous solids [J]. Nature, 1984, 310: 393
48 Tulk C A, Hart R, Klug D D, et al. Adding a length scale to the polyamorphic ice debate [J]. Phys. Rev. Lett., 2006, 97: 115503
49 Mishima O, Suzuki Y. Propagation of the polyamorphic transition of ice and the liquid-liquid critical point [J]. Nature, 2002, 419: 599
50 Itie J P, Polian A, Calas G, et al. Pressure-induced coordination changes in crystalline and vitreous GeO2 [J]. Phys. Rev. Lett., 1989, 63: 398
51 Meade C, Hemley R J, Mao H K. High-pressure X-ray diffraction of SiO2 glass [J]. Phys. Rev. Lett., 1992, 69: 1387
52 McMillan P F. Polyamorphic transformations in liquids and glasses [J]. J. Mater. Chem., 2004, 14: 1506
53 Crichton W A, Mezouar M, Grande T, et al. Breakdown of intermediate-range order in liquid GeSe2 at high pressure [J]. Nature, 2001, 414: 622
54 Mei Q, Benmore C J, Hart R T, et al. Topological changes in glassy GeSe2 at pressures up to 9.3 GPa determined by high-energy X-ray and neutron diffraction measurements [J]. Phys. Rev., 2006, 74B: 014203
55 McMillan P F, Wilson M, Daisenberger D, et al. A density-driven phase transition between semiconducting and metallic polyamorphs of silicon [J]. Nat. Mater., 2005, 4: 680
56 Bhat M H, Molinero V, Soignard E, et al. Vitrification of a monatomic metallic liquid [J]. Nature, 2007, 448: 787
57 Sheng H W, Luo W K, Alamgir F M, et al. Atomic packing and short-to-medium-range order in metallic glasses [J]. Nature, 2006, 439: 419
58 Miracle D B. A structural model for metallic glasses [J]. Nat. Mater., 2004, 3: 697
59 Sheng H W, Liu H Z, Cheng Y Q, et al. Polyamorphism in a metallic glass [J]. Nat. Mater., 2007, 6: 192
60 Zeng Q S, Li Y C, Feng C M, et al. Anomalous compression behavior in lanthanum/cerium-based metallic glass under high pressure [J]. Proc. Natl. Acad. Sci. USA, 2007, 104: 13565
61 Yavari A R, Moulec A L, Inoue A, et al. Excess free volume in metallic glasses measured by X-ray diffraction [J]. Acta Mater., 2005, 53: 1611
62 Ma D, Stoica A D, Wang X L. Power-law scaling and fractal nature of medium-range order in metallic glasses [J]. Nat. Mater., 2009, 8: 30
63 Zeng Q S, Lin Y, Liu Y J, et al. General 2.5 power law of metallic glasses [J]. Proc. Natl. Acad. Sci. USA, 2016, 113: 1714
64 Belhadi L, Decremps F, Pascarelli S, et al. Polyamorphism in cerium based bulk metallic glasses: Electronic and structural properties under pressure and temperature by X-ray absorption techniques [J]. Appl. Phys. Lett., 2013, 103: 111905
65 Lin C L, Ahmad A S, Lou H B, et al. Pressure-induced amorphous-to-amorphous reversible transformation in Pr75Al25 [J]. J. Appl. Phys., 2013, 114: 213516
66 Khan S A, Wang X D, Ahmad A S, et al. Temperature- and pressure-induced polyamorphic transitions in AuCuSi alloy [J]. J. Phys. Chem., 2019, 123C: 20342
67 Duarte M J, Bruna P, Pineda E, et al. Polyamorphic transitions in Ce-based metallic glasses by synchrotron radiation [J]. Phys. Rev., 2011, 84B: 224116
68 Zeng Q S, Fang Y Z, Lou H B, et al. Low-density to high-density transition in Ce75Al23Si2 metallic glass [J]. J. Phys.: Condens. Matter, 2010, 22: 375404
69 Wang Y Y, Zhang P P, Li Q, et al. Structural evolution of heavy rare earth-based metal glass under high pressure [J]. J. Phys.: Condens. Matter, 2020, 33: 035405
70 Wang Y Y, Dong X, Song X H, et al. Reversible polyamorphic transitions in Ce65.5Al10Cu22.5Co2 metallic glass [J]. Mater. Lett., 2016, 162: 203
71 Soderlind P. Theory of the crystal structures of cerium and the light actinides [J]. Adv. Phys., 1998, 47: 959
72 Shick A B, Pickett W E, Liechtenstein A I. Ground and metastable states in γ-Ce from correlated band theory [J]. J. Electron Spectrosc. Relat. Phenom., 2001, 114-116: 753
73 Lee S K, Eng P J, Mao H K, et al. Structure of alkali borate glasses at high pressure: B and Li K-edge inelastic X-ray scattering study [J]. Phys. Rev. Lett., 2007, 98: 105502
74 Zeng Q S, Ding Y, Mao W L, et al. Origin of pressure-induced polyamorphism in Ce75Al25 metallic glass [J]. Phys. Rev. Lett., 2010, 104: 105702
75 Allen J W, Martin R M. Kondo volume collapse and the γα transition in cerium [J]. Phys. Rev. Lett., 1982, 49: 1106
76 Yavari A R. The changing faces of disorder [J]. Nat. Mater., 2007, 6: 181
77 Lipp M J, Jackson D, Cynn H, et al. Thermal signatures of the kondo volume collapse in cerium [J]. Phys. Rev. Lett., 2008, 101: 165703
78 Luo Q, Garbarino G, Sun B A, et al. Hierarchical densification and negative thermal expansion in Ce-based metallic glass under high pressure [J]. Nat. Commun., 2015, 6: 5703
79 Decremps F, Morard G, Garbarino G, et al. Polyamorphism of a Ce-based bulk metallic glass by high-pressure and high-temperature density measurements [J]. Phys. Rev., 2016, 93B: 054209
80 Zeng Q S, Zeng Z D, Lou H B, et al. Pressure-induced elastic anomaly in a polyamorphous metallic glass [J]. Appl. Phys. Lett., 2017, 110: 221902
81 Li G, Wang Y Y, Liaw P K, et al. Electronic structure inheritance and pressure-induced polyamorphism in lanthanide-based metallic glasses [J]. Phys. Rev. Lett., 2012, 109: 125501
82 Hua H, Vohra Y K, Akella J, et al. Theoretical and experimental studies on gadolinium at ultra high pressure [J]. Rev. High Pressure Sci. Technol., 1998, 7: 233
83 Errandonea D, Boehler R, Schwager B, et al. Structural studies of gadolinium at high pressure and temperature [J]. Phys. Rev., 2007, 75B: 014103
84 Bradley J A, Moore K T, Lipp M J, et al. 4f electron delocalization and volume collapse in praseodymium metal [J]. Phys. Rev., 2012, 85B: 100102
85 Chesnut G N, Vohra Y K. Phase transformations and equation of state of praseodymium metal to 103 GPa [J]. Phys. Rev., 2000, 62B: 2965
86 Li G, Jing Q, Xu T, et al. Preparation of Zr60Ni21Al19 bulk metallic glass and compression behavior under high pressure [J]. J. Mater. Res., 2011, 23: 2346
87 Stemshorn A K, Vohra Y K. Structural stability and compressibility of group IV transition metals-based bulk metallic glasses under high pressure [J]. J. Appl. Phys., 2009, 106: 046101
88 Mattern N, Bednarcik J, Liermann H P, et al. Structural behaviour of Pd40Cu30Ni10P20 metallic glass under high pressure [J]. Intermetallics, 2013, 38: 9
89 Lou H B, Xiong L H, Ahmad A S, et al. Atomic structure of Pd81Si19 glassy alloy under high pressure [J]. Acta Mater., 2014, 81: 420
90 Li L L, Wang L H, Li R F, et al. Constant real-space fractal dimensionality and structure evolution in Ti62Cu38 metallic glass under high pressure [J]. Phys. Rev., 2016, 94B: 184201
91 Li G, Li Y C, Jiang Z K, et al. Elasticity, thermal expansion and compressive behavior of Mg65Cu25Tb10 bulk metallic glass [J]. J. Non-Cryst. Solids, 2009, 355: 521
92 Wang Y Y, Zhao W, Li G, et al. Pressure-induced polyamorphic transitions in ytterbium-based bulk metallic glasses [J]. Mater. Lett., 2013, 110: 184
93 Zhao W, Wang Y Y, Liu R P, et al. High compressibility of rare earth-based bulk metallic glasses [J]. Appl. Phys. Lett., 2013, 102: 031903
94 Wang Y Y, Dong X, Song X H, et al. The effect of composition on pressure-induced polyamorphism in metallic glasses [J]. Mater. Lett., 2017, 192: 142
95 Li L L, Wang L H, Li R F, et al. Pressure-induced polyamorphism in lanthanide-solute metallic glasses [J]. Phys. Status Solidi (RRL): Rapid Res. Lett., 2017, 11: 1700078
96 Sheng H W, Ma E, Liu H Z, et al. Pressure tunes atomic packing in metallic glass [J]. Appl. Phys. Lett., 2006, 88: 171906
97 Lou H B, Fang Y K, Zeng Q S, et al. Pressure-induced amorphous-to-amorphous configuration change in Ca-Al metallic glasses [J]. Sci. Rep., 2012, 2: 376
98 Wu M, Lou H B, Tse J S, et al. Pressure-induced polyamorphism in a main-group metallic glass [J]. Phys. Rev., 2016, 94B: 054201
99 Du Q, Liu X J, Zeng Q S, et al. Polyamorphic transition in a transition metal based metallic glass under high pressure [J]. Phys. Rev., 2019, 99B: 014208
100 Zhang L J, Sun F, Hong X G, et al. Pressure-induced polyamorphism by quantitative structure factor and pair distribution function analysis in two Ce-based metallic glasses [J]. J. Alloys Compd., 2017, 695: 1180
101 Dziegielewski P, Antonowicz J, Pietnoczka A, et al. Pressure-induced transformations in Ce-Al metallic glasses: The role of stiffness of interatomic pairs [J]. J. Alloys Compd., 2018, 757: 484
102 Li L L, Luo Q, Li R F, et al. Polyamorphism in Yb-based metallic glass induced by pressure [J]. Sci. Rep., 2017, 7: 46762
103 Liu X R, Hong S M. Evidence for a pressure-induced phase transition of amorphous to amorphous in two lanthanide-based bulk metallic glasses [J]. Appl. Phys. Lett., 2007, 90: 251903
104 Zeng Q S, Struzhkin V V, Fang Y Z, et al. Properties of polyamorphous Ce75Al25 metallic glasses [J]. Phys. Rev., 2010, 82B: 054111
105 Lou H B, Zeng Z D, Zhang F, et al. Two-way tuning of structural order in metallic glasses [J]. Nat. Commun., 2020, 11: 314
106 Zhang L J, Wang J L, Tang F, et al. Pressure-induced polyamorphism in Nd60Fe30Al10 and Ce70Al10Cu20 metallic glasses by high-energy X-ray diffraction and electrical resistance measurements [J]. High Pressure Res., 2017, 37: 11
107 Zhang B, Wang R J, Wang W H. Response of acoustic and elastic properties to pressure and crystallization of Ce-based bulk metallic glass [J]. Phys. Rev., 2005, 72B: 104205
108 Yu P, Wang R J, Zhao D Q, et al. Anomalous temperature dependent elastic moduli of Ce-based bulk metallic glass at low temperatures [J]. Appl. Phys. Lett., 2007, 91: 201911
109 Yu P, Chan K C, Chen W, et al. Low-temperature mechanical properties of Ce68Al10Cu20Co2 bulk metallic glass [J]. Philos. Mag. Lett., 2011, 91: 70
[1] 孙小钧, 何杰, 陈斌, 赵九洲, 江鸿翔, 张丽丽, 郝红日. Fe含量对Zr60Cu40-xFex相分离非晶合金组织结构、电阻性能和纳米压痕行为的影响[J]. 金属学报, 2021, 57(5): 675-683.
[2] 管鹏飞, 孙胜君. 金属玻璃结构及其失稳的原子层次研究[J]. 金属学报, 2021, 57(4): 501-514.
[3] 曹庆平, 吕林波, 王晓东, 蒋建中. 物理气相沉积制备金属玻璃薄膜及其力学性能的样品尺寸效应[J]. 金属学报, 2021, 57(4): 473-490.
[4] 屈瑞涛, 王晓地, 吴少杰, 张哲峰. 金属玻璃的剪切带变形与断裂机制研究进展[J]. 金属学报, 2021, 57(4): 453-472.
[5] 杨群, 彭思旭, 卜庆周, 于海滨. 非晶态Ni80P20合金的玻璃转变和过冷液体性质[J]. 金属学报, 2021, 57(4): 553-558.
[6] 蒋敏强, 高洋. 金属玻璃的结构年轻化及其对力学行为的影响[J]. 金属学报, 2021, 57(4): 425-438.
[7] 张倪侦, 马昕迪, 耿川, 穆永坤, 孙康, 贾延东, 黄波, 王刚. Ag元素添加对Cu-Zr-Al基金属玻璃纳米压痕行为的影响[J]. 金属学报, 2021, 57(4): 567-574.
[8] 黄火根, 张鹏国, 张培, 王勤国. U-CoU-Fe基础体系非晶形成能力的比较[J]. 金属学报, 2020, 56(6): 849-854.
[9] 赵燕春, 孙浩, 李春玲, 蒋建龙, 毛瑞鹏, 寇生中, 李春燕. 高强韧Ti-Ni基块体金属玻璃复合材料高温变形行为[J]. 金属学报, 2018, 54(12): 1818-1824.
[10] 汪卫华, 罗鹏. 金属玻璃中隐藏在长时间尺度下的动力学行为及其对性能的影响[J]. 金属学报, 2018, 54(11): 1479-1489.
[11] 张哲峰, 屈瑞涛, 刘增乾. 金属玻璃的断裂行为与强度理论研究进展*[J]. 金属学报, 2016, 52(10): 1171-1182.
[12] 沈勇,徐坚. Zr46.9Cu45.5Al5.6Y2.0金属玻璃含B2-CuZr相内生复合材料的制备及其力学性能*[J]. 金属学报, 2015, 51(11): 1407-1415.
[13] 朱振东,徐坚. Cu56Hf27Ti17块体金属玻璃的缺口韧性[J]. 金属学报, 2013, 49(8): 969-975.
[14] 高度,陈光,范沧. 熔体保温温度对Wf/Zr基金属玻璃复合材料室温力学性能的影响[J]. 金属学报, 2013, 49(11): 1481-1486.
[15] 覃作祥 王小京 张海峰 王中光 胡壮麒. Zr55Al10Ni5Cu30块体金属玻璃的摩擦焊焊接[J]. 金属学报, 2009, 45(5): 620-624.