Please wait a minute...
金属学报  2016, Vol. 52 Issue (10): 1171-1182    DOI: 10.11900/0412.1961.2016.00348
  论文 本期目录 | 过刊浏览 |
金属玻璃的断裂行为与强度理论研究进展*
张哲峰,屈瑞涛,刘增乾
中国科学院金属研究所沈阳材料科学国家(联合)实验室, 沈阳 110016
ADVANCES IN FRACTURE BEHAVIOR AND STRENGTH THEORY OF METALLIC GLASSES
Zhefeng ZHANG,Ruitao QU,Zengqian LIU
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

张哲峰, 屈瑞涛, 刘增乾. 金属玻璃的断裂行为与强度理论研究进展*[J]. 金属学报, 2016, 52(10): 1171-1182.
Zhefeng ZHANG, Ruitao QU, Zengqian LIU. ADVANCES IN FRACTURE BEHAVIOR AND STRENGTH THEORY OF METALLIC GLASSES[J]. Acta Metall Sin, 2016, 52(10): 1171-1182.

全文: PDF(1517 KB)   HTML
摘要: 

由于特殊的非晶态结构, 金属玻璃表现出与传统晶体材料十分不同的变形与断裂行为. 金属玻璃具有高强、脆性和宏观均匀、各向同性的特点, 使其成为研究高强度材料强度理论的理想模型材料, 因而关于金属玻璃的断裂行为与强度理论研究至今仍然吸引着材料、力学和物理等学科研究人员的广泛兴趣. 本文基于作者十多年来关于金属玻璃断裂与强度方面的研究工作, 着重阐述对韧性和脆性金属玻璃的断裂行为和强度理论方面的最新认识和研究进展, 最后提出金属玻璃断裂与强度方面尚待解决的科学问题.

关键词 金属玻璃屈服断裂变形强度理论    
Abstract

Owing to the unique amorphous structure, metallic glasses (MGs) exhibit quite distinctive deformation and fracture behaviors from the conventional crystalline materials. The high strength, brittleness and macroscopic homogenous and isotropic structural features make MGs ideal model materials for the investigations of the strength theory of high-strength materials. Hence the fracture behavior and strength theory of MGs have attracted very extensive interests of researchers from the fields of materials, mechanics and physics. This paper is based on the research works of the authors on the fracture and strength of MGs in the past decade, and concentrates on discussing the current knowledge and recent advances on the fracture behavior and strength theory of ductile and brittle MGs. Firstly, the fracture behaviors of ductile and brittle MGs including tension-compression strength asymmetry, fracture mechanism and ductile-to-brittle transition will be briefly elaborated. Then the strength theories of MGs will be discussed, with our emphasis on the foundation, validation, further development and application of the ellipse criterion. At last, some unsolved issues associated with the fracture and strength of MGs are proposed.

Key wordsmetallic glass    yielding    fracture    deformation    strength theory
收稿日期: 2016-08-02     
基金资助:* 国家自然科学基金项目51331007, 51301174和51501190资助
图1  典型韧性金属玻璃的拉伸与压缩应力-应变曲线[34]
图2  典型韧性金属玻璃的拉伸与压缩剪切断裂形貌[37]
图3  典型脆性金属玻璃的拉伸与压缩断裂形貌[30,37,68]
图4  金属玻璃的韧脆转变及解释[80]
图5  Mohr-Coulomb准则对韧性金属玻璃剪切断裂行为预测的几种情况[95]
图6  椭圆准则预测材料拉伸断裂行为的3种不同情况[89]
图7  名义断裂应力随剪切断裂角度的变化关系和2种准则的预测[34]
图8  Vit-105金属玻璃剪切断裂的正应力效应和2种准则的预测[34]
图9  能量准则对剪切与解理竞争作用结果的金属玻璃拉伸断裂的预测[98]
图10  在正-切应力空间普适性准则预测的临界屈服/断裂线[95]
图11  普适性准则在二维应力空间的屈服面及其与金属玻璃的实验和模拟结果的对比
图12  基于弹性常数及普适性准则对金属玻璃断裂行为的预测[41]
[1] Ashby M F, Greer A L.Scr Mater, 2006; 54: 321
[2] Wang J, Li R, Hua N, Zhang T.J Mater Res, 2011; 26: 2072
[3] Sun B A, Pan M X, Zhao D Q, Wang W H, Xi X K, Sandor M T, Wu Y.Scr Mater, 2008; 59: 1159
[4] Qu R T, Liu Z Q, Wang R F, Zhang Z F.J Alloys Compd, 2015; 637: 44
[5] Liu Y H, Wang G, Wang R J, Zhao D Q, Pan M X, Wang W H.Science, 2007; 315: 1385
[6] Hofmann D C, Suh J Y, Wiest A, Duan G, Lind M L, Demetriou M D, Johnson W L.Nature, 2008; 451: 1085
[7] Demetriou M D, Launey M E, Garrett G, Schramm J P, Hofmann D C, Johnson W L, Ritchie R O.Nat Mater, 2011; 10: 123
[8] He Q, Cheng Y Q, Ma E, Xu J.Acta Mater, 2011; 59: 202
[9] Wu Y, Xiao Y, Chen G, Liu C T, Lu Z.Adv Mater, 2010; 22: 2770
[10] Liu Z Q, Liu G, Qu R T, Zhang Z F, Wu S J, Zhang T.Sci Rep, 2014; 4: 4167
[11] Ketov S V, Sun Y H, Nachum S, Lu Z, Checchi A, Beraldin A R, Bai H Y, Wang W H, Louzguine-Luzgin D V, Carpenter M A, Greer A L.Nature, 2015; 524: 200
[12] Zhang Y, Wang W H, Greer A L.Nat Mater, 2006; 5: 857
[13] Chu J P, Greene J E, Jang J S C, Huang J C, Shen Y L, Liaw P K, Yokoyama Y, Inoue A, Nieh T G.Acta Mater, 2012; 60: 3226
[14] Sarac B, Schroers J.Nat Commun, 2013; 4: 2158
[15] Qu R T, Zhang Q S, Zhang Z F.Scr Mater, 2013; 68: 845
[16] Qu R T, Zhao J X, Stoica M, Eckert J, Zhang Z F.Mater Sci Eng, 2012; A534: 365
[17] Nieh T G, Yang Y, Lu J, Liu C T.Prog Nat Sci Mater Int, 2012; 22: 355
[18] Sun B A, Wang W H.Prog Mater Sci, 2015; 74: 211
[19] Zhang Z F, Wu F F, He G, Eckert J.J Mater Sci Technol, 2007; 23: 747
[20] Schuh C A, Hufnagel T C, Ramamurty U.Acta Mater, 2007; 55: 4067
[21] Trexler M M, Thadhani N N.Prog Mater Sci, 2010; 55: 759
[22] Greer A L, Cheng Y Q, Ma E.Mater Sci Eng, 2013; R74: 71
[23] Qiao J, Jia H, Liaw P K.Mater Sci Eng, 2016; R100: 1
[24] Hufnagel T C, Schuh C A, Falk M L.Acta Mater, 2016; 109: 375
[25] Zhang Y, Greer A L.Appl Phys Lett, 2006; 89: 071907
[26] Guo H, Yan P F, Wang Y B, Tan J, Zhang Z F, Sui M L, Ma E.Nat Mater, 2007; 6: 735
[27] Spaepen F.Acta Metall, 1977; 25: 407
[28] Wang Z T, Pan J, Li Y, Schuh C A.Phys Rev Lett, 2013; 111: 135504
[29] Leamy H, Wang T, Chen H.Metall Mater Trans, 1972; 3B: 699
[30] Zhang Z F, Zhang H, Shen B L, Inoue A, Eckert J.Philos Mag Lett, 2006; 86: 643
[31] Lewandowski J J, Wang W H, Greer A L.Philos Mag Lett, 2005; 85: 77
[32] Xu J, Ramamurty U, Ma E.JOM, 2010; 62(4): 10
[33] Qu R T, Liu Z Q, Wang G, Zhang Z F.Acta Mater, 2015; 91: 19
[34] Qu R T, Eckert J, Zhang Z F.J Appl Phys, 2011; 109: 083544
[35] Xu J, Ma E.J Mater Res, 2014; 29: 1489
[36] Schroers J, Johnson W L.Phys Rev Lett, 2004; 93: 255506
[37] Zhang Z F, He G, Eckert J, Schultz L.Phys Rev Lett, 2003; 91: 045505
[38] Donovan P E.Acta Metall, 1989; 37: 445
[39] Zhang Z F, Eckert J, Schultz L.Acta Mater, 2003; 51: 1167
[40] Schuh C A, Lund A C.Nat Mater, 2003; 2: 449
[41] Liu Z Q, Qu R T, Zhang Z F.J Appl Phys, 2015; 117: 014901
[42] Li G, Jiang M Q, Jiang F, He L, Sun J.Mater Sci Eng, 2015; A625: 393
[43] Li G, Jiang M Q, Jiang F, He L, Sun J.Appl Phys Lett, 2013; 102: 171901
[44] Qu R T, Stoica M, Eckert J, Zhang Z F.J Appl Phys, 2010; 108: 063509
[45] Pampillo C A.J Mater Sci, 1975; 10: 1194
[46] Spaepen F.Acta Metall, 1975; 23: 615
[47] Argon A S, Salama M.Mater Sci Eng, 1976; 23: 219
[48] Deibler L A, Lewandowski J J.Mater Sci Eng, 2012; A538: 259
[49] Qu R T, Zhang Z F.J Appl Phys, 2013; 114: 193504
[50] Hull D.Fractography: Observing, Measuring and Interpreting Fracture Surface Topography. Cambridge: Cambridge University Press, 1999: 1
[51] Zhao Y Y, Zhang G, Estévez D, Chang C, Wang X, Li R W.JAlloys Compd, 2015; 621: 238
[52] Maa? R, Birckigt P, Borchers C, Samwer K, Volkert C A.Acta Mater, 2015; 98: 94
[53] Sun B A, Yang Y, Wang W H, Liu C T.Sci Rep, 2016; 6: 21388
[54] Wu Y, Li H X, Liu Z Y, Chen G L, Lu Z P.Intermetallics, 2010; 18: 157
[55] Qu R T, Calin M, Eckert J, Zhang Z F.Scr Mater, 2012; 66: 733
[56] Qu R T, Zhang P, Zhang Z F.J Mater Sci Technol, 2014; 30: 599
[57] Sha Z D, Pei Q X, Sorkin V, Branicio P S, Zhang Y W, Gao H.Appl Phys Lett, 2013; 103: 081903
[58] Lei X, Li C, Shi X, Xu X, Wei Y.Sci Rep, 2015; 5: 10537
[59] Yao J H, Wang J Q, Lu L, Li Y.Appl Phys Lett, 2008; 92: 041905
[60] Zhao Y Y, Ma E, Xu J.Scr Mater, 2008; 58: 496
[61] Zheng X L, Wang H, Zheng M S, Wang F H.Notch Strength and Notch Sensitivity of Materials. Beijing: Science Press, 2008: 1
[62] Murali P, Ramamurty U.Acta Mater, 2005; 53: 1467
[63] Kumar G, Rector D, Conner R D, Schroers J.Acta Mater, 2009; 57: 3572
[64] Jiang F, Jiang M Q, Wang H F, Zhao Y L, He L, Sun J.Acta Mater, 2011; 59: 2057
[65] Ketkaew J, Liu Z, Chen W, Schroers J.Phys Rev Lett, 2015; 115: 265502
[66] Han Z H, He L, Hou Y L, Feng J, Sun J.Intermetallics, 2009; 17: 553
[67] Madge S V, Wada T, Louzguine-Luzgin D V, Greer A L, Inoue A.Scr Mater, 2009; 61: 540
[68] Zhang Z F, Wu F F, Gao W, Tan J, Wang Z G, Stoica M, Das J, Eckert J, Shen B L, Inoue A.Appl Phys Lett, 2006; 89: 251917
[69] Xi X K, Zhao D Q, Pan M X, Wang W H, Wu Y, Lewandowski J J.Phys Rev Lett, 2005; 94: 125510
[70] Wang G, Zhao D Q, Bai H Y, Pan M X, Xia A L, Han B S, Xi X K, Wu Y, Wang W H.Phys Rev Lett, 2007; 98: 235501
[71] Shen J, Liang W Z, Sun J F.Appl Phys Lett, 2006; 89: 121908
[72] Meng J X, Ling Z, Jiang M Q, Zhang H S, Dai L H.Appl Phys Lett, 2008; 92: 171909
[73] Jiang M Q, Ling Z, Meng J X, Dai L H.Philos Mag, 2008; 88: 407
[74] Zhao J X, Qu R T, Wu F F, Zhang Z F, Shen B L, Stoica M, Eckert J.J Appl Phys, 2009; 105: 103519
[75] Xia X X, Wang W H.Small, 2012; 8: 1197
[76] Jiang M Q, Meng J X, Gao J B, Wang X L, Rouxel T, Keryvin V, Ling Z, Dai L H.Intermetallics, 2010; 18: 2468
[77] Gao M, Sun B A, Yuan C C, Ma J, Wang W H.Acta Mater, 2012; 60: 6952
[78] Murali P, Guo T F, Zhang Y W, Narasimhan R, Li Y, Gao H J.Phys Rev Lett, 2011; 107: 215501
[79] Singh I, Narasimhan R, Ramamurty U.Phys Rev Lett, 2016; 117: 044302
[80] Liu Z Q, Wang W H, Jiang M Q, Zhang Z F.Philos Mag Lett, 2014; 94: 658
[81] Cheng Y Q, Ma E.Prog Mater Sci, 2011; 56: 379
[82] Madge S V, Louzguine-Luzgin D V, Lewandowski J J, Greer A L.Acta Mater, 2012; 60: 4800
[83] Yuan Z W, Li F G, Wang R T, Wang C P, Li J, Xue F M.Theor Appl Fract Mech, 2014; 74: 96
[84] Johnson W L, Samwer K.Phys Rev Lett, 2005; 95: 195501
[85] Pan J, Chen Q, Liu L, Li Y.Acta Mater, 2011; 59: 5146
[86] Paul B.In: Liebowitz H ed., Fracture, An Advanced Treatise. Vol.II, New York: Academic Press, 1968: 313
[87] Lund A C, Schuh C A.Acta Mater, 2003; 51: 5399
[88] Yu M H.Appl Mech Rev, 2002; 55: 169
[89] Zhang Z F, Eckert J.Phys Rev Lett, 2005; 94: 094301
[90] Chen Y, Jiang M Q, Wei Y J, Dai L H.Philos Mag, 2011; 91: 4536
[91] Coulomb C.Memoires de Mathematique et de Physique, Presentes al' Academie, Royale des Sciences par Divers Savans, et Lus dans ses Assemblees, 1773; 7: 343
[92] Davis L A, Kavesh S.J Mater Sci, 1975; 10: 453
[93] Anand L, Su C.J Mech Phys Solids, 2005; 53: 1362
[94] Lei X, Wei Y, Wei B, Wang W H.Acta Mater, 2015; 99: 206
[95] Qu R T, Zhang Z F.Sci Rep, 2013; 3: 1117
[96] Wu F F, Zhang Z F, Mao S X, Peker A, Eckert J.Phys Rev, 2007; 75B: 134201
[97] Packard C E, Schuh C A.Acta Mater, 2007; 55: 5348
[98] Qu R T, Zhang Z J, Zhang P, Liu Z Q, Zhang Z F.Sci Rep, 2016; 6: 23359
[99] Zhang P, Li S X, Zhang Z F.Mater Sci Eng, 2011; A529: 62
[100] Wang Z, Qu R T, Scudino S, Sun B A, Prashanth K G, Louzguine-Luzgin D V, Chen M W, Zhang Z F, Eckert J.NPG Asia Mater, 2015; 7: e229
[101] Wang W H, Wang R J, Li F Y, Zhao D Q, Pan M X.Appl Phys Lett, 1999; 74: 1803
[102] Wang W H.J Appl Phys, 2006; 99: 093506
[103] Wang W H.Prog Mater Sci, 2012; 57: 487
[104] Liu Z Q, Wang R F, Qu R T, Wang W H, Zhang Z F.J Appl Phys, 2014; 115: 203513
[105] Liu Z Q, Zhang Z F.J Appl Phys, 2014; 115: 163505
[106] Liu Z Q, Zhang Z F.Appl Phys Lett, 2013; 103: 181909
[107] Liu Z Q, Zhang Z F.J Appl Phys, 2013; 114: 243519
[108] Chen H S, Wang T T.J Appl Phys, 1970; 41: 5338
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[3] 徐永生, 张卫刚, 徐凌超, 但文蛟. 铁素体晶间变形协调与硬化行为模拟研究[J]. 金属学报, 2023, 59(8): 1042-1050.
[4] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[5] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[6] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[7] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[8] 刘俊鹏, 陈浩, 张弛, 杨志刚, 张勇, 戴兰宏. 高熵合金的低温塑性变形机制及强韧化研究进展[J]. 金属学报, 2023, 59(6): 727-743.
[9] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[10] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[11] 冀秀梅, 侯美伶, 王龙, 刘玠, 高克伟. 基于机器学习的中厚板变形抗力模型建模与应用[J]. 金属学报, 2023, 59(3): 435-446.
[12] 谷瑞成, 张健, 张明阳, 刘艳艳, 王绍钢, 焦大, 刘增乾, 张哲峰. 三维互穿结构SiC晶须骨架增强镁基复合材料制备及其力学性能[J]. 金属学报, 2022, 58(7): 857-867.
[13] 吴进, 杨杰, 陈浩峰. 纳入残余应力时不同拘束下DMWJ的断裂行为[J]. 金属学报, 2022, 58(7): 956-964.
[14] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[15] 任平, 陈兴品, 王存宇, 俞峰, 曹文全. 预变形和双级时效对Fe-30Mn-11Al-1.2C奥氏体低密度钢显微组织和力学性能的影响[J]. 金属学报, 2022, 58(6): 771-780.