Please wait a minute...
金属学报  2021, Vol. 57 Issue (4): 567-574    DOI: 10.11900/0412.1961.2021.00009
  研究论文 本期目录 | 过刊浏览 |
Ag元素添加对Cu-Zr-Al基金属玻璃纳米压痕行为的影响
张倪侦, 马昕迪, 耿川, 穆永坤, 孙康, 贾延东, 黄波, 王刚()
上海大学 材料科学与工程学院 上海 200444
Effect of Adding Ag on the Nanoindentation Behavior of Cu-Zr-Al-Based Metallic Glass
ZHANG Nizhen, MA Xindi, GENG Chuan, MU Yongkun, SUN Kang, JIA Yandong, HUANG Bo, WANG Gang()
School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
引用本文:

张倪侦, 马昕迪, 耿川, 穆永坤, 孙康, 贾延东, 黄波, 王刚. Ag元素添加对Cu-Zr-Al基金属玻璃纳米压痕行为的影响[J]. 金属学报, 2021, 57(4): 567-574.
Nizhen ZHANG, Xindi MA, Chuan GENG, Yongkun MU, Kang SUN, Yandong JIA, Bo HUANG, Gang WANG. Effect of Adding Ag on the Nanoindentation Behavior of Cu-Zr-Al-Based Metallic Glass[J]. Acta Metall Sin, 2021, 57(4): 567-574.

全文: PDF(4049 KB)   HTML
摘要: 

采用铜模吸铸法制备得到不同Ag含量的Cu45Zr45Al10-xAgx (x = 1、2、3、5,原子分数,%)金属玻璃。利用纳米压痕技术系统地探讨了Ag元素添加对Cu-Zr-Al基金属玻璃纳米塑性变形行为的影响。借助经验方程拟合纳米压痕蠕变曲线求得应变速率敏感指数(m),进而计算出蠕变过程中的剪切转变区体积(Ω)。通过Kohlrausch-Williams-Watts方程拟合蠕变深度曲线,分析蠕变过程中的弛豫行为。结果表明,Ag含量增加导致KWW方程的扩展指数(β)增加。与此同时,Cu-Zr-Al基金属玻璃的硬度随微量Ag元素含量的增加而提高,并且在维持高硬度的基础上提高了塑性。本工作为理解金属玻璃热稳定性与力学性能的相关性奠定了基础。

关键词 金属玻璃蠕变深度剪切转变区体积弛豫    
Abstract

Metallic glasses (MGs) with a long-range disordered structure and without crystallographic defects have attracted great research attention. Owing to the disordered structure, MGs usually exhibit excellent physical and chemical properties, comprehensive mechanical performances, and high thermal stability. Minor doping of elements can effectively enhance the glass-forming ability of MGs and then seriously affect the yielding strength and plasticity. In this study, a family of Cu45Zr45Al10-xAgx (x = 1, 2, 3, and 5, atomic fraction, %) MG with minor Ag-addition was prepared by suction casting. A nanoindentation test was used to investigate the influence of Ag content on the nanoplastic deformation behavior of the Cu-Zr-Al-based MG. In terms of the empirical equation, the strain rate sensitivity index (m) was acquired to calculate the shear transformation zone volume during the nanoindentation creep process. Based on the Kohlrausch-Williams-Watts equation, the relaxation evolution was obtained. As Ag content approaches 5%, m attains its minimum, indicating that the creep resistance of the Cu-Zr-Al-based MG is the largest. The creep behavior of the system depends on the loading rate, i.e., the faster the loading rate, the lower the creep resistance. With an increase in the Ag content, the exponent stretch is increased, and the hardness of the Cu-Zr-Al-based MG was enhanced combined with an increased plasticity. This study presents the fundamental information of the relationship between the thermal dynamic and mechanical properties of the Cu-Zr-Al-based MG.

Key wordsmetallic glass    creep depth    shear transition zone volume    relaxation
收稿日期: 2021-01-06     
ZTFLH:  TG139  
基金资助:国家自然科学基金项目(51925103)
作者简介: 张倪侦,女,1992年生,博士生
图1  不同Ag含量Cu45Zr45Al10-xAgx金属玻璃的XRD谱、DSC曲线,以及使用pseudo-Voigt拟合得到的第一峰峰位以及半高宽
图2  不同Ag含量Cu45Zr45Al10-xAgx金属玻璃在不同加载速率下的载荷-位移曲线(a) x = 1 (b) x = 2 (c) x = 3 (d) x = 5
图3  不同Ag含量Cu45Zr45Al10-xAgx金属玻璃在不同加载速率下的蠕变曲线(a) x = 1 (b) x = 2 (c) x = 3 (d) x = 5
图4  x = 1时Cu45Zr45Al10-xAgx金属玻璃在0.5 mN/s加载速率下的蠕变深度与时间关系图(用式(1)拟合)和应变速率敏感指数(m)
图5  剪切转变区体积(Ω)和激活体积(ΔV*)随Ag含量增加的变化
图6  x = 1时Cu45Zr45Al10-xAgx金属玻璃在0.5 mN/s加载速率下的蠕变深度与时间关系曲线(用式(9)拟合)
图7  特征弛豫时间(τ')和扩展指数(β)与加载速率的关系,以及τ'和β与Ag含量的关系
1 Ashby M F, Greer A L. Metallic glasses as structural materials [J]. Scr. Mater., 2006, 54: 321
2 Bhowmick R, Raghavan R, Chattopadhyay K, et al. Plastic flow softening in a bulk metallic glass [J]. Acta Mater., 2006, 54: 4221
3 Wang W H. Roles of minor additions in formation and properties of bulk metallic glasses [J]. Prog. Mater. Sci., 2007, 52: 540
4 Klement W, Willens R H, Duwez P. Non-crystalline structure in solidified gold-silicon alloys [J]. Nature, 1960, 187: 869
5 Drehman A J, Greer A L, Turnbull D. Bulk formation of a metallic glass: Pd40Ni40P20 [J]. Appl. Phys. Lett., 1982, 41: 716
6 Zhang Y, Zhou M, Zhao X Y, et al. Co substituted Zr-Cu-Al-Ni metallic glasses with enhanced glass-forming ability and high plasticity [J]. J. Non-Cryst. Solids, 2017, 473: 120
7 Zhang Y, Chen J, Chen G L, et al. Glass formation mechanism of minor yttrium addition in CuZrAl alloys [J]. Appl. Phys. Lett., 2006, 89: 131904
8 Park E S, Kim D H. Phase separation and enhancement of plasticity in Cu-Zr-Al-Y bulk metallic glasses [J]. Acta Mater., 2006, 54: 2597
9 Liu Y H, Wang G, Pan M X, et al. Deformation behaviors and mechanism of Ni-Co-Nb-Ta bulk metallic glasses with high strength and plasticity [J]. J. Mater. Res., 2007, 22: 869
10 Cheng Y Q, Ma E, Sheng H W. Alloying strongly influences the structure, dynamics, and glass forming ability of metallic supercooled liquids [J]. Appl. Phys. Lett., 2008, 93: 111913
11 Li F, Zhang H J, Liu X J, et al. Effects of Al addition on atomic structure of Cu-Zr metallic glass [J]. J. Appl. Phys., 2018, 123: 055101
12 Cheng Y Q, Cao A J, Sheng H W, et al. Local order influences initiation of plastic flow in metallic glass: Effects of alloy composition and sample cooling history [J]. Acta Mater., 2008, 56: 5263
13 Xu D H, Lohwongwatana B, Duan G, et al. Bulk metallic glass formation in binary Cu-rich alloy series——Cu100-xZrx (x = 34, 36, 38.2, 40 at.%) and mechanical properties of bulk Cu64Zr36 glass [J]. Acta Mater., 2004, 52: 2621
14 Zhang W, Inoue A. High glass-forming ability and good mechanical properties of new bulk glassy alloys in Cu-Zr-Ag ternary system [J]. J. Mater., 2006, 21: 234
15 Jiang Q K, Wang X D, Nie X P, et al. Zr-(Cu, Ag)-Al bulk metallic glasses [J]. Acta Mater., 2008, 56: 1785
16 Wang X, Cao Q P, Chen Y M, et al. A plastic Zr-Cu-Ag-Al bulk metallic glass [J]. Acta Mater., 2011, 59: 1037
17 Li M C, Jiang M Q, Jiang F, et al. Testing effects on hardness of a Zr-based metallic glass under nanoindentation [J]. Scr. Mater., 2017, 138: 120
18 Fornell J, Concustell A, Greer A L, et al. Effects of shot peening on the nanoindentation response of Cu47.5Zr47.5Al5 metallic glass [J]. J. Alloys Compd., 2014, 586: S36
19 Liu F X, Gao Y F, Liaw P K. Rate-dependent deformation behavior of Zr-based metallic-glass coatings examined by nanoindentation [J]. Metall. Mater. Trans., 2008, 39A: 1862
20 Yang Y, Zeng J F, Ye J C, et al. Structural inhomogeneity and anelastic deformation in metallic glasses revealed by spherical nanoindentation [J]. Appl. Phys. Lett., 2010, 97: 261905
21 Yoo B G, Oh J H, Kim Y J, et al. Nanoindentation analysis of time-dependent deformation in as-cast and annealed Cu-Zr bulk metallic glass [J]. Intermetallics, 2010, 18: 1898
22 Burgess T, Laws K J, Ferry M. Effect of loading rate on the serrated flow of a bulk metallic glass during nanoindentation [J]. Acta Mater., 2008, 56: 4829
23 Bian X L, Wang G, Chen H C, et al. Manipulation of free volumes in a metallic glass through Xe-ion irradiation [J]. Acta Mater., 2016, 106: 66
24 Bian X L, Zhao D, Kim J T, et al. Controlling the distribution of structural heterogeneities in severely deformed metallic glass [J]. Mater. Sci. Eng., 2019, A752: 36
25 Johnson W L, Samwer K. A universal criterion for plastic yielding of metallic glasses with a (T/Tg)2/3 temperature dependence [J]. Phys. Rev. Lett., 2005, 95: 195501
26 Pan D, Inoue A, Sakurai T, et al. Experimental characterization of shear transformation zones for plastic flow of bulk metallic glasses [J]. Proc. Natl. Acad. Sci. USA, 2008, 105: 14769
27 Argon A S. Plastic deformation in metallic glasses [J]. Acta Metall., 1979, 27: 47
28 Ma X D, Li P Y, Wang G. Nano-indentation creep behavior of a Co56Ta35B9 metallic glass film [J]. Shanghai Met., 2019, 41(6): 39
28 马昕迪, 李培友, 王 刚. Co56Ta35B9非晶合金薄膜纳米压痕蠕变行为研究 [J]. 上海金属, 2019, 41(6): 39
29 Yang B, Riester L, Nieh T G. Strain hardening and recovery in a bulk metallic glass under nanoindentation [J]. Scr. Mater., 2006, 54: 1277
30 Tong X, Wang G, Yi J, et al. Shear avalanches in plastic deformation of a metallic glass composite [J]. Int. J. Plast., 2016, 77: 141
31 Li J, Ke C H, Tong X, et al. Impact of free volume on shear band multiplication and bending plasticity [J]. Mater. Sci. Eng., 2019, A747: 136
32 Zhang M, Chen Y, Li W. On the origin of softening in the plastic deformation of metallic glasses [J]. Int. J. Plast., 2019, 116: 24
[1] 孙小钧, 何杰, 陈斌, 赵九洲, 江鸿翔, 张丽丽, 郝红日. Fe含量对Zr60Cu40-xFex相分离非晶合金组织结构、电阻性能和纳米压痕行为的影响[J]. 金属学报, 2021, 57(5): 675-683.
[2] 杨群, 彭思旭, 卜庆周, 于海滨. 非晶态Ni80P20合金的玻璃转变和过冷液体性质[J]. 金属学报, 2021, 57(4): 553-558.
[3] 屈瑞涛, 王晓地, 吴少杰, 张哲峰. 金属玻璃的剪切带变形与断裂机制研究进展[J]. 金属学报, 2021, 57(4): 453-472.
[4] 蒋敏强, 高洋. 金属玻璃的结构年轻化及其对力学行为的影响[J]. 金属学报, 2021, 57(4): 425-438.
[5] 管鹏飞, 孙胜君. 金属玻璃结构及其失稳的原子层次研究[J]. 金属学报, 2021, 57(4): 501-514.
[6] 曹庆平, 吕林波, 王晓东, 蒋建中. 物理气相沉积制备金属玻璃薄膜及其力学性能的样品尺寸效应[J]. 金属学报, 2021, 57(4): 473-490.
[7] 曾桥石, 尹梓梁, 楼鸿波. 金属玻璃中的非晶多形态转变[J]. 金属学报, 2021, 57(4): 491-500.
[8] 黄火根, 张鹏国, 张培, 王勤国. U-CoU-Fe基础体系非晶形成能力的比较[J]. 金属学报, 2020, 56(6): 849-854.
[9] 赵燕春, 孙浩, 李春玲, 蒋建龙, 毛瑞鹏, 寇生中, 李春燕. 高强韧Ti-Ni基块体金属玻璃复合材料高温变形行为[J]. 金属学报, 2018, 54(12): 1818-1824.
[10] 汪卫华, 罗鹏. 金属玻璃中隐藏在长时间尺度下的动力学行为及其对性能的影响[J]. 金属学报, 2018, 54(11): 1479-1489.
[11] 张哲峰, 屈瑞涛, 刘增乾. 金属玻璃的断裂行为与强度理论研究进展*[J]. 金属学报, 2016, 52(10): 1171-1182.
[12] 沈勇,徐坚. Zr46.9Cu45.5Al5.6Y2.0金属玻璃含B2-CuZr相内生复合材料的制备及其力学性能*[J]. 金属学报, 2015, 51(11): 1407-1415.
[13] 朱振东,徐坚. Cu56Hf27Ti17块体金属玻璃的缺口韧性[J]. 金属学报, 2013, 49(8): 969-975.
[14] 高度,陈光,范沧. 熔体保温温度对Wf/Zr基金属玻璃复合材料室温力学性能的影响[J]. 金属学报, 2013, 49(11): 1481-1486.
[15] 胡强 曾燮榕 钱海霞 谢胜辉 盛洪超. 铁基块体非晶合金玻璃形成能力与特征自由体积的关系[J]. 金属学报, 2012, 48(11): 1329-1334.