|
|
U-Co与U-Fe基础体系非晶形成能力的比较 |
黄火根( ), 张鹏国, 张培, 王勤国 |
中国工程物理研究院材料研究所 江油 621907 |
|
Comparison of Glass Forming Ability Between U-Co and U-Fe Base Systems |
HUANG Huogen( ), ZHANG Pengguo, ZHANG Pei, WANG Qinguo |
Institute of Materials, China Academy of Engineering Physics, Jiangyou 621907, China |
引用本文:
黄火根, 张鹏国, 张培, 王勤国. U-Co与U-Fe基础体系非晶形成能力的比较[J]. 金属学报, 2020, 56(6): 849-854.
Huogen HUANG,
Pengguo ZHANG,
Pei ZHANG,
Qinguo WANG.
Comparison of Glass Forming Ability Between U-Co and U-Fe Base Systems[J]. Acta Metall Sin, 2020, 56(6): 849-854.
[1] |
Wang W H, Luo P. The dynamic behavior hidden in the long time scale of metallic glasses and its effect on the properties [J]. Acta Metall. Sin., 2018, 54: 1479
doi: 10.11900/0412.1961.2018.00247
|
[1] |
汪卫华, 罗 鹏. 金属玻璃中隐藏在长时间尺度下的动力学行为及其对性能的影响 [J]. 金属学报, 2018, 54: 1479
doi: 10.11900/0412.1961.2018.00247
|
[2] |
Peng C, Li Y, Deng Y H, et al. Atomistic simulation for local atomic structures of amorphous Ni-P alloys with near-eutectic compositions [J]. Acta Metall. Sin., 2017, 53: 1659
doi: 10.11900/0412.1961.2017.00185
|
[2] |
彭 超, 李 媛, 邓永和等. 近共晶成分Ni-P非晶合金微结构特征的原子模拟分析 [J]. 金属学报, 2017, 53: 1659
doi: 10.11900/0412.1961.2017.00185
|
[3] |
Geng Y X, Zhang Z J, Wang Y M, et al. Structure-property correlation of high Fe-content Fe-B-Si-Hf bulk glassy alloys [J]. Acta Metall. Sin., 2017, 53: 369
doi: 10.11900/0412.1961.2016.00281
|
[3] |
耿遥祥, 张志杰, 王英敏等. 高Fe含量Fe-B-Si-Hf块体非晶合金的结构-性能关联 [J]. 金属学报, 2017, 53: 369
doi: 10.11900/0412.1961.2016.00281
|
[4] |
Zhang Z F, Qu R T, Liu Z Q. Advances in fracture behavior and strength theory of metallic glasses [J]. Acta Metall. Sin., 2016, 52: 1171
doi: 10.11900/0412.1961.2016.00348
|
[4] |
张哲峰, 屈瑞涛, 刘增乾. 金属玻璃的断裂行为与强度理论研究进展 [J]. 金属学报, 2016, 52: 1171
doi: 10.11900/0412.1961.2016.00348
|
[5] |
Zhou W, Weng W P, Hou J X. Glass-forming ability and corrosion resistance of Zr-Cu-Al-Co bulk metallic glass [J]. J. Mater. Sci. Technol., 2016, 32: 349
doi: 10.1016/j.jmst.2015.12.012
|
[6] |
Yu Q, Wang X D, Lou H B, et al. Atomic packing in Fe-based metallic glasses [J]. Acta Mater., 2016, 102: 116
doi: 10.1016/j.actamat.2015.09.001
|
[7] |
Wang Z R, Qiang J B, Wang Y M, et al. Composition design procedures of Ti-based bulk metallic glasses using the cluster-plus-glue-atom model [J]. Acta Mater., 2016, 111: 366
doi: 10.1016/j.actamat.2016.03.072
|
[8] |
Qiao J W, Jia H L, Liaw P K. Metallic glass matrix composites [J]. Mater. Sci. Eng., 2016, R100: 1
|
[9] |
Plummer J. Is metallic glass poised to come of age? [J]. Nat. Mater., 2016, 14: 553
doi: 10.1038/nmat4297
|
[10] |
Hufnagel T C, Schuh C A, Falk M L. Deformation of metallic glasses: Recent developments in theory, simulations, and experiments [J]. Acta Mater., 2016, 109: 375
doi: 10.1016/j.actamat.2016.01.049
|
[11] |
Huang H G, Ke H B, Zhang P, et al. U-based binary strong glass forming system [J]. J. Non-Cryst. Solids, 2019, 511: 68
doi: 10.1016/j.jnoncrysol.2018.12.041
|
[12] |
Huang H G, Ke H B, Liu T W, et al. Effect of minor alloying on the glass forming ability of U-Co alloy [J]. Rare Met. Mater. Eng., 2018, 47: 990
|
[12] |
黄火根, 柯海波, 刘天伟等. 微合金化对U-Co金属玻璃形成能力的影响 [J]. 稀有金属材料与工程, 2018, 47: 990
|
[13] |
Xu H Y, Ke H B, Huang H G, et al. U-based metallic glasses with superior glass forming ability [J]. J. Nucl. Mater., 2018, 499: 372
doi: 10.1016/j.jnucmat.2017.11.043
|
[14] |
Huang H G, Ke H B, Zhang P, et al. U-involved sphere-dispersed metallic glass matrix composites [J]. Mater. Des., 2018, 157: 371
doi: 10.1016/j.matdes.2018.07.062
|
[15] |
Ke H B, Xu H Y, Huang H G, et al. Non-isothermal crystallization behavior of U-based amorphous alloy [J]. J. Alloys Compd., 2017, 691: 436
doi: 10.1016/j.jallcom.2016.08.252
|
[16] |
Huang H G, Xu H Y, Zhang P G, et al. U-Cr binary alloys with anomalous glass-forming ability [J]. Acta Metall. Sin., 2017, 53: 233
doi: 10.11900/0412.1961.2016.00275
|
[16] |
黄火根, 徐宏扬, 张鹏国等. 具有反常非晶形成能力的U-Cr二元合金 [J]. Acta Metall. Sin., 2017, 53: 233
doi: 10.11900/0412.1961.2016.00275
|
[17] |
Huang H G, Ke H B, Zhang P, et al. Effect of minor alloying on the glass formation of U-based alloys [J]. J. Alloys Compd., 2016, 688: 599
doi: 10.1016/j.jallcom.2016.07.229
|
[18] |
Huang H G, Ke H B, Wang Y M, et al. Stable U-based metallic glasses [J]. J. Alloys Compd., 2016, 684: 75
doi: 10.1016/j.jallcom.2016.05.124
|
[19] |
Huang H G, Wang Y M, Chen L, et al. Study on formation and corrosion resistance of amorphous alloy in U-Co system [J]. Acta Metall. Sin., 2015, 51: 623
|
[19] |
黄火根, 王英敏, 陈 亮等. U-Co系非晶合金的形成与耐蚀性研究 [J]. 金属学报, 2015, 51: 623
|
[20] |
Ke H B, Zhang P, Sun B A, et al. Dissimilar nanoscaled structural heterogeneity in U-based metallic glasses revealed by nanoindentation [J]. J. Alloys Compd., 2019, 788: 391
doi: 10.1016/j.jallcom.2019.02.256
|
[21] |
Xu H Y, Ke H B, Huang H G, et al. Nanoindentation creep behavior of U65Fe30Al5 amorphous alloy [J]. Acta Metall. Sin., 2017, 53: 817
doi: 10.11900/0412.1961.2016.00322
|
[21] |
徐宏扬, 柯海波, 黄火根等. U65Fe30Al5非晶合金的纳米压痕蠕变行为研究 [J]. 金属学报, 2017, 53: 817
doi: 10.11900/0412.1961.2016.00322
|
[22] |
Ke H B, Pu Z, Zhang P, et al. Research progress in U-based amorphous alloys [J]. Acta Phys. Sin., 2017, 66: 176104
|
[22] |
柯海波, 蒲 朕, 张 培等. 铀基非晶合金的发展现状 [J]. 物理学报, 2017, 66: 176104
doi: 10.7498/aps.66.176104
|
[23] |
Giessen B C, Elliott R O. Properties of metallic glasses containing actinide metals: I. Thermal properties of U-M glasses (M=V, Cr, Mn, Fe, Co, and Ni) [A]. Proceedings of the 3rd International Conference on Rapid Quenching [C]. Brighton, UK: The Metals Society, 1978: 406
|
[24] |
Elliott R O, Giessen B C. On the formation of metallic glasses based on U, Np or Pu [J]. Acta Mater., 1982, 30: 785
doi: 10.1016/0001-6160(82)90076-1
|
[25] |
Drehman A J, Poon S J. Anomalous glass-forming ability of uranium-based alloys [J]. J. Non-Cryst. Solids, 1985, 76: 321
doi: 10.1016/0022-3093(85)90008-0
|
[26] |
Wang W H. The nature and properties of amorphous matter [J]. Prog. Phys. 2013, 33: 177
|
[26] |
汪卫华. 非晶态物质的本质和特性 [J]. 物理学进展, 2013, 33: 177
|
[27] |
Highmore R J, Greer A L. Eutectics and the formation of amorphous alloys [J]. Nature, 1989, 339: 363
doi: 10.1038/339363a0
|
[28] |
Wittenberg L J, Ofte D, Curtiss C F. Fluid flow of liquid plutonium alloys in an oscillating-cup viscosimeter [J]. J. Chem. Phys., 1968, 48: 3253
doi: 10.1063/1.1669599
|
[29] |
Wittenberg L J, DeWitt R. Volume contraction during melting; Emphasis on lanthanide and actinide metals [J]. J. Chem. Phys., 1972, 56: 4526
doi: 10.1063/1.1677899
|
[30] |
Sun M H, Geng H R, Bian X F, et al. Abnormal changes in aluminum viscosity and its relationship with the microstructure of melts [J]. Acta Metall. Sin., 2000, 36: 1134
|
[30] |
孙民华, 耿浩然, 边秀房等. Al熔体粘度的突变点及与熔体微观结构的关系 [J]. 金属学报, 2000, 36: 1134
|
[31] |
Wittenberg L J, DeWitt R, Takeuchi S. Viscosity of liquid rare-earth and actinide metals [A]. Proceedings of Conference on the Properties of Liquid Metals [C]. London, UK: Taylor and Francis, 1973: 555
|
[32] |
Scheidt E W, Riesemeier H, Lüders K, et al. Influence of 5f electrons on transport properties in uranium-based metallic glasses [J]. J. Alloys Compd., 1992, 183: 116
doi: 10.1016/0925-8388(92)90736-S
|
[33] |
Springell R, Wilhelm F, Rogalev A, et al. Polarization of U 5f states in uranium multilayers [J]. Phys. Rev., 2008, 77B: 064423
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|