Please wait a minute...
金属学报  2020, Vol. 56 Issue (6): 849-854    DOI: 10.11900/0412.1961.2019.00349
  本期目录 | 过刊浏览 |
U-CoU-Fe基础体系非晶形成能力的比较
黄火根(), 张鹏国, 张培, 王勤国
中国工程物理研究院材料研究所 江油 621907
Comparison of Glass Forming Ability Between U-Co and U-Fe Base Systems
HUANG Huogen(), ZHANG Pengguo, ZHANG Pei, WANG Qinguo
Institute of Materials, China Academy of Engineering Physics, Jiangyou 621907, China
引用本文:

黄火根, 张鹏国, 张培, 王勤国. U-CoU-Fe基础体系非晶形成能力的比较[J]. 金属学报, 2020, 56(6): 849-854.
Huogen HUANG, Pengguo ZHANG, Pei ZHANG, Qinguo WANG. Comparison of Glass Forming Ability Between U-Co and U-Fe Base Systems[J]. Acta Metall Sin, 2020, 56(6): 849-854.

全文: PDF(1256 KB)   HTML
摘要: 

针对U-Co与U-Fe体系中非晶形成能力最佳的合金U66.7Co33.3与U69.2Fe30.8,通过调整合金熔体的冷却速率获得一系列非晶样品,结合XRD与DSC技术研究了样品的相组成随冷却速率的演变规律。结果表明,这些合金在较高冷却速率下几乎都能够完全非晶化,而当冷速降低到一定程度时都会析出U6Mn型晶体相。相比而言,U-Fe合金形成完全非晶需要更低的临界冷却速率,从而直接证实U-Fe体系比U-Co具备更强的非晶形成能力,其原因是前者在非晶形成过程中兼具热力学与动力学优势。

关键词 铀合金非晶合金金属玻璃非晶形成能力    
Abstract

Because of having better corrosion resistance properties than crystalline uranium alloys, U-based metallic glasses show strong potential of applications in nuclear fields. U-Co and U-Fe are U-based important base glass systems, from which almost all the reported multi-component U-based amorphous alloys derive. However, which system possessing higher glass forming ability is unclear yet. Therefore, the relationship between the glass formation and the solidification rate is studied on two glassy alloys U66.7Co33.3 and U69.2Fe30.8 in this work, which are the best glass former in the corresponding system. A series of amorphous samples were prepared by modifying the cooling rate of their melts, and then were measured by using XRD and calorimetric analysis technique. The results show that both alloys were able to nearly amorphize completely at higher cooling rate, and tended to segregate U6Mn-typed crystalline phase when the cooling rate declined to some extent. In contrast, the U-Fe alloy needs a much lower critical cooling rate to achieve fully amorphous structure, directly demonstrating that U-Fe system possesses stronger glass forming capacity than U-Co. The reason for this conclusion is that the former system is of both thermodynamic and kinetic advantages for glass formation. This result can be applied as the foundation to exploit superior novel multicomponent U-based amorphous alloys.

Key wordsuranium alloy    amorphous alloy    metallic glass    glass forming ability
收稿日期: 2019-10-21     
ZTFLH:  TG139  
基金资助:国防科技基金项目(1300025);中国工程物理研究院规划项目(TCGH071601)
作者简介: 黄火根,男,1980年生,研究员,博士
图1  不同Cu辊线速率下U66.7Co33.3合金样品的XRD谱
图2  不同Cu辊线速率下U66.7Co33.3合金样品的DSC曲线
Alloy

V

m·s-1

Crystallization enthalpy / (J·g-1)
U66.7Co33.31547.14
2547.75
5049.28
U69.2Fe30.8100.96
1523.44
2023.69
表1  不同Cu辊线速率下铀基非晶样品的晶化焓变
图3  不同Cu辊线速率下U69.2Fe30.8合金样品的XRD谱
图4  不同Cu辊线速率下U69.2Fe30.8合金样品的DSC曲线
ElementAtomic numberOuter electron configurationAtomic size difference with UElectronegativity difference with U
Fe263d64s2About 18%0.4
Co273d74s2About 20%0.5
表2  Fe与Co元素的物理化学性质对比
[1] Wang W H, Luo P. The dynamic behavior hidden in the long time scale of metallic glasses and its effect on the properties [J]. Acta Metall. Sin., 2018, 54: 1479
doi: 10.11900/0412.1961.2018.00247
[1] 汪卫华, 罗 鹏. 金属玻璃中隐藏在长时间尺度下的动力学行为及其对性能的影响 [J]. 金属学报, 2018, 54: 1479
doi: 10.11900/0412.1961.2018.00247
[2] Peng C, Li Y, Deng Y H, et al. Atomistic simulation for local atomic structures of amorphous Ni-P alloys with near-eutectic compositions [J]. Acta Metall. Sin., 2017, 53: 1659
doi: 10.11900/0412.1961.2017.00185
[2] 彭 超, 李 媛, 邓永和等. 近共晶成分Ni-P非晶合金微结构特征的原子模拟分析 [J]. 金属学报, 2017, 53: 1659
doi: 10.11900/0412.1961.2017.00185
[3] Geng Y X, Zhang Z J, Wang Y M, et al. Structure-property correlation of high Fe-content Fe-B-Si-Hf bulk glassy alloys [J]. Acta Metall. Sin., 2017, 53: 369
doi: 10.11900/0412.1961.2016.00281
[3] 耿遥祥, 张志杰, 王英敏等. 高Fe含量Fe-B-Si-Hf块体非晶合金的结构-性能关联 [J]. 金属学报, 2017, 53: 369
doi: 10.11900/0412.1961.2016.00281
[4] Zhang Z F, Qu R T, Liu Z Q. Advances in fracture behavior and strength theory of metallic glasses [J]. Acta Metall. Sin., 2016, 52: 1171
doi: 10.11900/0412.1961.2016.00348
[4] 张哲峰, 屈瑞涛, 刘增乾. 金属玻璃的断裂行为与强度理论研究进展 [J]. 金属学报, 2016, 52: 1171
doi: 10.11900/0412.1961.2016.00348
[5] Zhou W, Weng W P, Hou J X. Glass-forming ability and corrosion resistance of Zr-Cu-Al-Co bulk metallic glass [J]. J. Mater. Sci. Technol., 2016, 32: 349
doi: 10.1016/j.jmst.2015.12.012
[6] Yu Q, Wang X D, Lou H B, et al. Atomic packing in Fe-based metallic glasses [J]. Acta Mater., 2016, 102: 116
doi: 10.1016/j.actamat.2015.09.001
[7] Wang Z R, Qiang J B, Wang Y M, et al. Composition design procedures of Ti-based bulk metallic glasses using the cluster-plus-glue-atom model [J]. Acta Mater., 2016, 111: 366
doi: 10.1016/j.actamat.2016.03.072
[8] Qiao J W, Jia H L, Liaw P K. Metallic glass matrix composites [J]. Mater. Sci. Eng., 2016, R100: 1
[9] Plummer J. Is metallic glass poised to come of age? [J]. Nat. Mater., 2016, 14: 553
doi: 10.1038/nmat4297
[10] Hufnagel T C, Schuh C A, Falk M L. Deformation of metallic glasses: Recent developments in theory, simulations, and experiments [J]. Acta Mater., 2016, 109: 375
doi: 10.1016/j.actamat.2016.01.049
[11] Huang H G, Ke H B, Zhang P, et al. U-based binary strong glass forming system [J]. J. Non-Cryst. Solids, 2019, 511: 68
doi: 10.1016/j.jnoncrysol.2018.12.041
[12] Huang H G, Ke H B, Liu T W, et al. Effect of minor alloying on the glass forming ability of U-Co alloy [J]. Rare Met. Mater. Eng., 2018, 47: 990
[12] 黄火根, 柯海波, 刘天伟等. 微合金化对U-Co金属玻璃形成能力的影响 [J]. 稀有金属材料与工程, 2018, 47: 990
[13] Xu H Y, Ke H B, Huang H G, et al. U-based metallic glasses with superior glass forming ability [J]. J. Nucl. Mater., 2018, 499: 372
doi: 10.1016/j.jnucmat.2017.11.043
[14] Huang H G, Ke H B, Zhang P, et al. U-involved sphere-dispersed metallic glass matrix composites [J]. Mater. Des., 2018, 157: 371
doi: 10.1016/j.matdes.2018.07.062
[15] Ke H B, Xu H Y, Huang H G, et al. Non-isothermal crystallization behavior of U-based amorphous alloy [J]. J. Alloys Compd., 2017, 691: 436
doi: 10.1016/j.jallcom.2016.08.252
[16] Huang H G, Xu H Y, Zhang P G, et al. U-Cr binary alloys with anomalous glass-forming ability [J]. Acta Metall. Sin., 2017, 53: 233
doi: 10.11900/0412.1961.2016.00275
[16] 黄火根, 徐宏扬, 张鹏国等. 具有反常非晶形成能力的U-Cr二元合金 [J]. Acta Metall. Sin., 2017, 53: 233
doi: 10.11900/0412.1961.2016.00275
[17] Huang H G, Ke H B, Zhang P, et al. Effect of minor alloying on the glass formation of U-based alloys [J]. J. Alloys Compd., 2016, 688: 599
doi: 10.1016/j.jallcom.2016.07.229
[18] Huang H G, Ke H B, Wang Y M, et al. Stable U-based metallic glasses [J]. J. Alloys Compd., 2016, 684: 75
doi: 10.1016/j.jallcom.2016.05.124
[19] Huang H G, Wang Y M, Chen L, et al. Study on formation and corrosion resistance of amorphous alloy in U-Co system [J]. Acta Metall. Sin., 2015, 51: 623
[19] 黄火根, 王英敏, 陈 亮等. U-Co系非晶合金的形成与耐蚀性研究 [J]. 金属学报, 2015, 51: 623
[20] Ke H B, Zhang P, Sun B A, et al. Dissimilar nanoscaled structural heterogeneity in U-based metallic glasses revealed by nanoindentation [J]. J. Alloys Compd., 2019, 788: 391
doi: 10.1016/j.jallcom.2019.02.256
[21] Xu H Y, Ke H B, Huang H G, et al. Nanoindentation creep behavior of U65Fe30Al5 amorphous alloy [J]. Acta Metall. Sin., 2017, 53: 817
doi: 10.11900/0412.1961.2016.00322
[21] 徐宏扬, 柯海波, 黄火根等. U65Fe30Al5非晶合金的纳米压痕蠕变行为研究 [J]. 金属学报, 2017, 53: 817
doi: 10.11900/0412.1961.2016.00322
[22] Ke H B, Pu Z, Zhang P, et al. Research progress in U-based amorphous alloys [J]. Acta Phys. Sin., 2017, 66: 176104
[22] 柯海波, 蒲 朕, 张 培等. 铀基非晶合金的发展现状 [J]. 物理学报, 2017, 66: 176104
doi: 10.7498/aps.66.176104
[23] Giessen B C, Elliott R O. Properties of metallic glasses containing actinide metals: I. Thermal properties of U-M glasses (M=V, Cr, Mn, Fe, Co, and Ni) [A]. Proceedings of the 3rd International Conference on Rapid Quenching [C]. Brighton, UK: The Metals Society, 1978: 406
[24] Elliott R O, Giessen B C. On the formation of metallic glasses based on U, Np or Pu [J]. Acta Mater., 1982, 30: 785
doi: 10.1016/0001-6160(82)90076-1
[25] Drehman A J, Poon S J. Anomalous glass-forming ability of uranium-based alloys [J]. J. Non-Cryst. Solids, 1985, 76: 321
doi: 10.1016/0022-3093(85)90008-0
[26] Wang W H. The nature and properties of amorphous matter [J]. Prog. Phys. 2013, 33: 177
[26] 汪卫华. 非晶态物质的本质和特性 [J]. 物理学进展, 2013, 33: 177
[27] Highmore R J, Greer A L. Eutectics and the formation of amorphous alloys [J]. Nature, 1989, 339: 363
doi: 10.1038/339363a0
[28] Wittenberg L J, Ofte D, Curtiss C F. Fluid flow of liquid plutonium alloys in an oscillating-cup viscosimeter [J]. J. Chem. Phys., 1968, 48: 3253
doi: 10.1063/1.1669599
[29] Wittenberg L J, DeWitt R. Volume contraction during melting; Emphasis on lanthanide and actinide metals [J]. J. Chem. Phys., 1972, 56: 4526
doi: 10.1063/1.1677899
[30] Sun M H, Geng H R, Bian X F, et al. Abnormal changes in aluminum viscosity and its relationship with the microstructure of melts [J]. Acta Metall. Sin., 2000, 36: 1134
[30] 孙民华, 耿浩然, 边秀房等. Al熔体粘度的突变点及与熔体微观结构的关系 [J]. 金属学报, 2000, 36: 1134
[31] Wittenberg L J, DeWitt R, Takeuchi S. Viscosity of liquid rare-earth and actinide metals [A]. Proceedings of Conference on the Properties of Liquid Metals [C]. London, UK: Taylor and Francis, 1973: 555
[32] Scheidt E W, Riesemeier H, Lüders K, et al. Influence of 5f electrons on transport properties in uranium-based metallic glasses [J]. J. Alloys Compd., 1992, 183: 116
doi: 10.1016/0925-8388(92)90736-S
[33] Springell R, Wilhelm F, Rogalev A, et al. Polarization of U 5f states in uranium multilayers [J]. Phys. Rev., 2008, 77B: 064423
[1] 刘帅帅, 侯超楠, 王恩刚, 贾鹏. Zr61Cu25Al12Ti2Zr52.5Cu17.9Ni14.6Al10Ti5 块体非晶合金过冷液相区的塑性流变行为[J]. 金属学报, 2022, 58(6): 807-815.
[2] 李金富, 李伟. 铝基非晶合金的结构与非晶形成能力[J]. 金属学报, 2022, 58(4): 457-472.
[3] 张雷, 施韬, 黄火根, 张培, 张鹏国, 吴敏, 法涛. 铀基非晶复合材料的相分离与凝固序列研究[J]. 金属学报, 2022, 58(2): 225-230.
[4] 张金勇, 赵聪聪, 吴宜谨, 陈长玖, 陈正, 沈宝龙. (Fe0.33Co0.33Ni0.33)84 -x Cr8Mn8B x 高熵非晶合金薄带的结构特征及其晶化行为[J]. 金属学报, 2022, 58(2): 215-224.
[5] 韩录会, 柯海波, 张培, 桑革, 黄火根. 非晶态U60Fe27.5Al12.5 合金的晶化动力学行为[J]. 金属学报, 2022, 58(10): 1316-1324.
[6] 孙小钧, 何杰, 陈斌, 赵九洲, 江鸿翔, 张丽丽, 郝红日. Fe含量对Zr60Cu40-xFex相分离非晶合金组织结构、电阻性能和纳米压痕行为的影响[J]. 金属学报, 2021, 57(5): 675-683.
[7] 曹庆平, 吕林波, 王晓东, 蒋建中. 物理气相沉积制备金属玻璃薄膜及其力学性能的样品尺寸效应[J]. 金属学报, 2021, 57(4): 473-490.
[8] 李宁, 黄信. 块体非晶合金的3D打印成形研究进展[J]. 金属学报, 2021, 57(4): 529-541.
[9] 胡祥, 葛嘉城, 刘思楠, 伏澍, 吴桢舵, 冯涛, 刘冬, 王循理, 兰司. 具有异常放热现象的Fe-Nb-B-Y非晶合金燃烧机理[J]. 金属学报, 2021, 57(4): 542-552.
[10] 管鹏飞, 孙胜君. 金属玻璃结构及其失稳的原子层次研究[J]. 金属学报, 2021, 57(4): 501-514.
[11] 屈瑞涛, 王晓地, 吴少杰, 张哲峰. 金属玻璃的剪切带变形与断裂机制研究进展[J]. 金属学报, 2021, 57(4): 453-472.
[12] 杨群, 彭思旭, 卜庆周, 于海滨. 非晶态Ni80P20合金的玻璃转变和过冷液体性质[J]. 金属学报, 2021, 57(4): 553-558.
[13] 刘日平, 马明臻, 张新宇. 块体非晶合金铸造成形的研究新进展[J]. 金属学报, 2021, 57(4): 515-528.
[14] 张倪侦, 马昕迪, 耿川, 穆永坤, 孙康, 贾延东, 黄波, 王刚. Ag元素添加对Cu-Zr-Al基金属玻璃纳米压痕行为的影响[J]. 金属学报, 2021, 57(4): 567-574.
[15] 潘杰, 段峰辉. 非晶合金的回春行为[J]. 金属学报, 2021, 57(4): 439-452.