Please wait a minute...
金属学报  2020, Vol. 56 Issue (6): 849-854    DOI: 10.11900/0412.1961.2019.00349
  本期目录 | 过刊浏览 |
U-CoU-Fe基础体系非晶形成能力的比较
黄火根(), 张鹏国, 张培, 王勤国
中国工程物理研究院材料研究所 江油 621907
Comparison of Glass Forming Ability Between U-Co and U-Fe Base Systems
HUANG Huogen(), ZHANG Pengguo, ZHANG Pei, WANG Qinguo
Institute of Materials, China Academy of Engineering Physics, Jiangyou 621907, China
全文: PDF(1256 KB)   HTML
摘要: 

针对U-Co与U-Fe体系中非晶形成能力最佳的合金U66.7Co33.3与U69.2Fe30.8,通过调整合金熔体的冷却速率获得一系列非晶样品,结合XRD与DSC技术研究了样品的相组成随冷却速率的演变规律。结果表明,这些合金在较高冷却速率下几乎都能够完全非晶化,而当冷速降低到一定程度时都会析出U6Mn型晶体相。相比而言,U-Fe合金形成完全非晶需要更低的临界冷却速率,从而直接证实U-Fe体系比U-Co具备更强的非晶形成能力,其原因是前者在非晶形成过程中兼具热力学与动力学优势。

关键词 铀合金非晶合金金属玻璃非晶形成能力    
Abstract

Because of having better corrosion resistance properties than crystalline uranium alloys, U-based metallic glasses show strong potential of applications in nuclear fields. U-Co and U-Fe are U-based important base glass systems, from which almost all the reported multi-component U-based amorphous alloys derive. However, which system possessing higher glass forming ability is unclear yet. Therefore, the relationship between the glass formation and the solidification rate is studied on two glassy alloys U66.7Co33.3 and U69.2Fe30.8 in this work, which are the best glass former in the corresponding system. A series of amorphous samples were prepared by modifying the cooling rate of their melts, and then were measured by using XRD and calorimetric analysis technique. The results show that both alloys were able to nearly amorphize completely at higher cooling rate, and tended to segregate U6Mn-typed crystalline phase when the cooling rate declined to some extent. In contrast, the U-Fe alloy needs a much lower critical cooling rate to achieve fully amorphous structure, directly demonstrating that U-Fe system possesses stronger glass forming capacity than U-Co. The reason for this conclusion is that the former system is of both thermodynamic and kinetic advantages for glass formation. This result can be applied as the foundation to exploit superior novel multicomponent U-based amorphous alloys.

Key wordsuranium alloy    amorphous alloy    metallic glass    glass forming ability
收稿日期: 2019-10-21     
ZTFLH:  TG139  
基金资助:国防科技基金项目(1300025);中国工程物理研究院规划项目(TCGH071601)
通讯作者: 黄火根     E-mail: hhgeng2002@sina.com
Corresponding author: HUANG Huogen     E-mail: hhgeng2002@sina.com
作者简介: 黄火根,男,1980年生,研究员,博士

引用本文:

黄火根, 张鹏国, 张培, 王勤国. U-CoU-Fe基础体系非晶形成能力的比较[J]. 金属学报, 2020, 56(6): 849-854.
Huogen HUANG, Pengguo ZHANG, Pei ZHANG, Qinguo WANG. Comparison of Glass Forming Ability Between U-Co and U-Fe Base Systems. Acta Metall Sin, 2020, 56(6): 849-854.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2019.00349      或      https://www.ams.org.cn/CN/Y2020/V56/I6/849

图1  不同Cu辊线速率下U66.7Co33.3合金样品的XRD谱
图2  不同Cu辊线速率下U66.7Co33.3合金样品的DSC曲线
Alloy

V

m·s-1

Crystallization enthalpy / (J·g-1)
U66.7Co33.31547.14
2547.75
5049.28
U69.2Fe30.8100.96
1523.44
2023.69
表1  不同Cu辊线速率下铀基非晶样品的晶化焓变
图3  不同Cu辊线速率下U69.2Fe30.8合金样品的XRD谱
图4  不同Cu辊线速率下U69.2Fe30.8合金样品的DSC曲线
ElementAtomic numberOuter electron configurationAtomic size difference with UElectronegativity difference with U
Fe263d64s2About 18%0.4
Co273d74s2About 20%0.5
表2  Fe与Co元素的物理化学性质对比
[1] Wang W H, Luo P. The dynamic behavior hidden in the long time scale of metallic glasses and its effect on the properties [J]. Acta Metall. Sin., 2018, 54: 1479
doi: 10.11900/0412.1961.2018.00247
[1] 汪卫华, 罗 鹏. 金属玻璃中隐藏在长时间尺度下的动力学行为及其对性能的影响 [J]. 金属学报, 2018, 54: 1479
doi: 10.11900/0412.1961.2018.00247
[2] Peng C, Li Y, Deng Y H, et al. Atomistic simulation for local atomic structures of amorphous Ni-P alloys with near-eutectic compositions [J]. Acta Metall. Sin., 2017, 53: 1659
doi: 10.11900/0412.1961.2017.00185
[2] 彭 超, 李 媛, 邓永和等. 近共晶成分Ni-P非晶合金微结构特征的原子模拟分析 [J]. 金属学报, 2017, 53: 1659
doi: 10.11900/0412.1961.2017.00185
[3] Geng Y X, Zhang Z J, Wang Y M, et al. Structure-property correlation of high Fe-content Fe-B-Si-Hf bulk glassy alloys [J]. Acta Metall. Sin., 2017, 53: 369
doi: 10.11900/0412.1961.2016.00281
[3] 耿遥祥, 张志杰, 王英敏等. 高Fe含量Fe-B-Si-Hf块体非晶合金的结构-性能关联 [J]. 金属学报, 2017, 53: 369
doi: 10.11900/0412.1961.2016.00281
[4] Zhang Z F, Qu R T, Liu Z Q. Advances in fracture behavior and strength theory of metallic glasses [J]. Acta Metall. Sin., 2016, 52: 1171
doi: 10.11900/0412.1961.2016.00348
[4] 张哲峰, 屈瑞涛, 刘增乾. 金属玻璃的断裂行为与强度理论研究进展 [J]. 金属学报, 2016, 52: 1171
doi: 10.11900/0412.1961.2016.00348
[5] Zhou W, Weng W P, Hou J X. Glass-forming ability and corrosion resistance of Zr-Cu-Al-Co bulk metallic glass [J]. J. Mater. Sci. Technol., 2016, 32: 349
doi: 10.1016/j.jmst.2015.12.012
[6] Yu Q, Wang X D, Lou H B, et al. Atomic packing in Fe-based metallic glasses [J]. Acta Mater., 2016, 102: 116
doi: 10.1016/j.actamat.2015.09.001
[7] Wang Z R, Qiang J B, Wang Y M, et al. Composition design procedures of Ti-based bulk metallic glasses using the cluster-plus-glue-atom model [J]. Acta Mater., 2016, 111: 366
doi: 10.1016/j.actamat.2016.03.072
[8] Qiao J W, Jia H L, Liaw P K. Metallic glass matrix composites [J]. Mater. Sci. Eng., 2016, R100: 1
[9] Plummer J. Is metallic glass poised to come of age? [J]. Nat. Mater., 2016, 14: 553
doi: 10.1038/nmat4297
[10] Hufnagel T C, Schuh C A, Falk M L. Deformation of metallic glasses: Recent developments in theory, simulations, and experiments [J]. Acta Mater., 2016, 109: 375
doi: 10.1016/j.actamat.2016.01.049
[11] Huang H G, Ke H B, Zhang P, et al. U-based binary strong glass forming system [J]. J. Non-Cryst. Solids, 2019, 511: 68
doi: 10.1016/j.jnoncrysol.2018.12.041
[12] Huang H G, Ke H B, Liu T W, et al. Effect of minor alloying on the glass forming ability of U-Co alloy [J]. Rare Met. Mater. Eng., 2018, 47: 990
[12] 黄火根, 柯海波, 刘天伟等. 微合金化对U-Co金属玻璃形成能力的影响 [J]. 稀有金属材料与工程, 2018, 47: 990
[13] Xu H Y, Ke H B, Huang H G, et al. U-based metallic glasses with superior glass forming ability [J]. J. Nucl. Mater., 2018, 499: 372
doi: 10.1016/j.jnucmat.2017.11.043
[14] Huang H G, Ke H B, Zhang P, et al. U-involved sphere-dispersed metallic glass matrix composites [J]. Mater. Des., 2018, 157: 371
doi: 10.1016/j.matdes.2018.07.062
[15] Ke H B, Xu H Y, Huang H G, et al. Non-isothermal crystallization behavior of U-based amorphous alloy [J]. J. Alloys Compd., 2017, 691: 436
doi: 10.1016/j.jallcom.2016.08.252
[16] Huang H G, Xu H Y, Zhang P G, et al. U-Cr binary alloys with anomalous glass-forming ability [J]. Acta Metall. Sin., 2017, 53: 233
doi: 10.11900/0412.1961.2016.00275
[16] 黄火根, 徐宏扬, 张鹏国等. 具有反常非晶形成能力的U-Cr二元合金 [J]. Acta Metall. Sin., 2017, 53: 233
doi: 10.11900/0412.1961.2016.00275
[17] Huang H G, Ke H B, Zhang P, et al. Effect of minor alloying on the glass formation of U-based alloys [J]. J. Alloys Compd., 2016, 688: 599
doi: 10.1016/j.jallcom.2016.07.229
[18] Huang H G, Ke H B, Wang Y M, et al. Stable U-based metallic glasses [J]. J. Alloys Compd., 2016, 684: 75
doi: 10.1016/j.jallcom.2016.05.124
[19] Huang H G, Wang Y M, Chen L, et al. Study on formation and corrosion resistance of amorphous alloy in U-Co system [J]. Acta Metall. Sin., 2015, 51: 623
[19] 黄火根, 王英敏, 陈 亮等. U-Co系非晶合金的形成与耐蚀性研究 [J]. 金属学报, 2015, 51: 623
[20] Ke H B, Zhang P, Sun B A, et al. Dissimilar nanoscaled structural heterogeneity in U-based metallic glasses revealed by nanoindentation [J]. J. Alloys Compd., 2019, 788: 391
doi: 10.1016/j.jallcom.2019.02.256
[21] Xu H Y, Ke H B, Huang H G, et al. Nanoindentation creep behavior of U65Fe30Al5 amorphous alloy [J]. Acta Metall. Sin., 2017, 53: 817
doi: 10.11900/0412.1961.2016.00322
[21] 徐宏扬, 柯海波, 黄火根等. U65Fe30Al5非晶合金的纳米压痕蠕变行为研究 [J]. 金属学报, 2017, 53: 817
doi: 10.11900/0412.1961.2016.00322
[22] Ke H B, Pu Z, Zhang P, et al. Research progress in U-based amorphous alloys [J]. Acta Phys. Sin., 2017, 66: 176104
[22] 柯海波, 蒲 朕, 张 培等. 铀基非晶合金的发展现状 [J]. 物理学报, 2017, 66: 176104
doi: 10.7498/aps.66.176104
[23] Giessen B C, Elliott R O. Properties of metallic glasses containing actinide metals: I. Thermal properties of U-M glasses (M=V, Cr, Mn, Fe, Co, and Ni) [A]. Proceedings of the 3rd International Conference on Rapid Quenching [C]. Brighton, UK: The Metals Society, 1978: 406
[24] Elliott R O, Giessen B C. On the formation of metallic glasses based on U, Np or Pu [J]. Acta Mater., 1982, 30: 785
doi: 10.1016/0001-6160(82)90076-1
[25] Drehman A J, Poon S J. Anomalous glass-forming ability of uranium-based alloys [J]. J. Non-Cryst. Solids, 1985, 76: 321
doi: 10.1016/0022-3093(85)90008-0
[26] Wang W H. The nature and properties of amorphous matter [J]. Prog. Phys. 2013, 33: 177
[26] 汪卫华. 非晶态物质的本质和特性 [J]. 物理学进展, 2013, 33: 177
[27] Highmore R J, Greer A L. Eutectics and the formation of amorphous alloys [J]. Nature, 1989, 339: 363
doi: 10.1038/339363a0
[28] Wittenberg L J, Ofte D, Curtiss C F. Fluid flow of liquid plutonium alloys in an oscillating-cup viscosimeter [J]. J. Chem. Phys., 1968, 48: 3253
doi: 10.1063/1.1669599
[29] Wittenberg L J, DeWitt R. Volume contraction during melting; Emphasis on lanthanide and actinide metals [J]. J. Chem. Phys., 1972, 56: 4526
doi: 10.1063/1.1677899
[30] Sun M H, Geng H R, Bian X F, et al. Abnormal changes in aluminum viscosity and its relationship with the microstructure of melts [J]. Acta Metall. Sin., 2000, 36: 1134
[30] 孙民华, 耿浩然, 边秀房等. Al熔体粘度的突变点及与熔体微观结构的关系 [J]. 金属学报, 2000, 36: 1134
[31] Wittenberg L J, DeWitt R, Takeuchi S. Viscosity of liquid rare-earth and actinide metals [A]. Proceedings of Conference on the Properties of Liquid Metals [C]. London, UK: Taylor and Francis, 1973: 555
[32] Scheidt E W, Riesemeier H, Lüders K, et al. Influence of 5f electrons on transport properties in uranium-based metallic glasses [J]. J. Alloys Compd., 1992, 183: 116
doi: 10.1016/0925-8388(92)90736-S
[33] Springell R, Wilhelm F, Rogalev A, et al. Polarization of U 5f states in uranium multilayers [J]. Phys. Rev., 2008, 77B: 064423
[1] 杨高林, 林鑫, 卢献钢. 激光多次熔凝Zr55Cu30Al10Ni5非晶合金的晶化形态与演化机理[J]. 金属学报, 2019, 55(12): 1544-1550.
[2] 金辰日, 杨素媛, 邓学元, 王扬卫, 程兴旺. 纳米晶化对锆基非晶合金动态压缩性能的影响[J]. 金属学报, 2019, 55(12): 1561-1568.
[3] 赵燕春, 孙浩, 李春玲, 蒋建龙, 毛瑞鹏, 寇生中, 李春燕. 高强韧Ti-Ni基块体金属玻璃复合材料高温变形行为[J]. 金属学报, 2018, 54(12): 1818-1824.
[4] 汪卫华, 罗鹏. 金属玻璃中隐藏在长时间尺度下的动力学行为及其对性能的影响[J]. 金属学报, 2018, 54(11): 1479-1489.
[5] 徐宏扬,柯海波,黄火根,张培,张鹏国,刘天伟. U65Fe30Al5非晶合金的纳米压痕蠕变行为研究[J]. 金属学报, 2017, 53(7): 817-823.
[6] 张媛媛,林鑫,魏雷,任永明. 激光立体成形退火态Zr55Cu30Al10Ni5粉末的晶化行为[J]. 金属学报, 2017, 53(7): 824-832.
[7] 耿遥祥,张志杰,王英敏,羌建兵,董闯,汪海斌,特古斯. 高Fe含量Fe-B-Si-Hf块体非晶合金的结构-性能关联[J]. 金属学报, 2017, 53(3): 369-375.
[8] 郑玉峰,吴远浩. 处在变革中的医用金属材料[J]. 金属学报, 2017, 53(3): 257-297.
[9] 黄火根,徐宏扬,张鹏国,王英敏,柯海波,张培,刘天伟. 具有反常非晶形成能力的U-Cr二元合金[J]. 金属学报, 2017, 53(2): 233-238.
[10] 彭超, 李媛, 邓永和, 彭平. 近共晶成分Ni-P非晶合金微结构特征的原子模拟分析[J]. 金属学报, 2017, 53(12): 1659-1668.
[11] 王中原,何杰,杨柏俊,江鸿翔,赵九洲,王同敏,郝红日. Zr-Ce-Co-Cu难混溶合金的液-液相分离和双非晶相形成*[J]. 金属学报, 2016, 52(11): 1379-1387.
[12] 耿遥祥,王英敏,羌建兵,董闯,汪海斌,特古斯. Fe-B-Si-Nb块体非晶合金的成分设计与优化*[J]. 金属学报, 2016, 52(11): 1459-1466.
[13] 张哲峰, 屈瑞涛, 刘增乾. 金属玻璃的断裂行为与强度理论研究进展*[J]. 金属学报, 2016, 52(10): 1171-1182.
[14] 沈勇,徐坚. Zr46.9Cu45.5Al5.6Y2.0金属玻璃含B2-CuZr相内生复合材料的制备及其力学性能*[J]. 金属学报, 2015, 51(11): 1407-1415.
[15] 马广财, 付华萌, 王峥, 许庆亮, 张海峰. 304不锈钢毛细管/Zr53.5Cu26.5Ni5Al12Ag3块体非晶合金复合材料的制备与性能研究[J]. 金属学报, 2014, 50(9): 1087-1094.