Please wait a minute...
金属学报  2015, Vol. 51 Issue (11): 1407-1415    DOI: 10.11900/0412.1961.2015.00140
  本期目录 | 过刊浏览 |
Zr46.9Cu45.5Al5.6Y2.0金属玻璃含B2-CuZr相内生复合材料的制备及其力学性能*
沈勇(),徐坚
PREPARATION AND MECHANICAL PROPERTIES OF Zr46.9Cu45.5Al5.6Y2.0 IN SITU BMG COMPOSITES WITH B2-CuZr PHASE
Yong SHEN(),Jian XU
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

沈勇,徐坚. Zr46.9Cu45.5Al5.6Y2.0金属玻璃含B2-CuZr相内生复合材料的制备及其力学性能*[J]. 金属学报, 2015, 51(11): 1407-1415.
Yong SHEN, Jian XU. PREPARATION AND MECHANICAL PROPERTIES OF Zr46.9Cu45.5Al5.6Y2.0 IN SITU BMG COMPOSITES WITH B2-CuZr PHASE[J]. Acta Metall Sin, 2015, 51(11): 1407-1415.

全文: PDF(1069 KB)   HTML
摘要: 

通过增大铸造棒材直径来调整熔体的冷却速率, 可在Zr46.9Cu45.5Al5.6Y2.0块体金属玻璃(BMG)中获得体积分数可变化的球形B2-CuZr相均匀分布于金属玻璃基体、并且具有较大尺寸的内生复合材料, 其中含25%B2-CuZr相(体积分数)复合材料在压缩载荷下的塑性应变由单相金属玻璃的1.6%增大至6.5%, 但在单向拉伸时样品没有观察到明显的延性应变. 分析认为, 复合材料在拉伸载荷下发生脆性断裂的本征原因在于CuZr相晶粒尺寸和间距与金属玻璃基体塑性区尺寸不满足尺寸匹配关系. 在ZrCuAl合金中添加2%Y (原子分数)严重损伤了金属玻璃基体的断裂韧性和塑性区尺寸, 与Zr46.9Cu45.5Al5.6Y2.0 BMG相比, 不含Y的Zr48Cu45Al7 BMG样品可预制疲劳裂纹, 三点弯曲实验测得断裂韧性为(62±3) MPam1/2, 平面应变条件下在裂纹尖端的塑性区尺寸可达150 mm.

关键词 块体金属玻璃复合材料B2-CuZr断裂韧性    
Abstract

Bulk metallic glass (BMG) composites containing B2-CuZr phase are of interest due to they behave large plastic strain and apparent work hardening in tension. Nevertheless till now most BMG composites containing B2-CuZr phase are based on Cu47.5Zr47.5Al5 or Zr48Cu47.5Al4Co0.5 BMG, which has limited glass forming ability (GFA). The prepared sample size is small, which restricts their potential engineering structural applications. In this work, Zr-Cu-Al-Y quaternary system is selected due to its high GFA. By tuning composition close to CuZr alloy in Zr-Cu-Al-Y quaternary system, Zr46.9Cu45.5Al5.6Y2.0 BMG is selected because it has proper GFA (critical diameter Dc=5 mm) and relatively large fracture toughness (KQ=(49±3) MPam1/2). By decreasing the cooling rates of the melt via increasing diameter of casting rods, large-sized in situ Zr46.9Cu45.5Al5.6Y2.0 BMG composites containing 13% and 25% volume fractions spherical B2-CuZr phase were prepared in the casting rods with 6 and 7 mm in diameters, respectively. In compression testing, the in situ BMG composites containing 25%B2-CuZr phase promote multiple shear bands within glass matrix and remarkable global plastic deformation, accompanied by a large compressive plastic strain as 6.5%. Nevertheless in tension testing no obvious global ductility was achieved, which attributes to the low mode I fracture toughness and small plastic zone size (RP=88 mm, RP=(1/3π)(KQ/sy)2 ) of glass matrix. Three point bending test results show that Y has an adverse effect on the fracture toughness and plastic zone size of Zr-Cu-Al BMGs. In contrast to Zr46.9Cu45.5Al5.6Y2.0 BMG, fatigue pre-cracked Zr48Cu45Al7 BMG plate samples can be prepared and exhibit a high fracture toughness (KQ=(62±3) MPam1/2) and a large plastic zone size (RP=150 mm) in plane strain state. Our results show that GFA and fracture toughness of glass matrix should be balanced when designing new BMG composites containing B2-CuZr phase.

Key wordsbulk metallic glass    composite    B2-CuZr    fracture toughness
    
基金资助:*国家自然科学基金资助项目51171180
图1  在Zr-Cu-Al-Y四元合金三维成分空间上演化出内生B2-CuZr相块体金属玻璃(BMG)复合材料的示意图(其中Zr44.4Cu42Al10Y3.6 (Y1)合金标记为星号)[27]
图2  不同直径(Cu0.5Zr0.5)xM100-x (M=Zr0.15Y0.225Al0.625, 84≤x≤94)系列合金铸态棒材芯部的相组成示意图
图3  直径6和7 mm的YC合金铸态圆棒横截面芯部的OM像
图4  直径6, 7和8 mm的YC合金铸态圆棒横截面芯部XRD谱
图5  直径5, 6和7 mm的YC合金铸态圆棒横截面芯部DSC曲线
Rod diameter mm Tg K ΔH J/g Vf %
5 680 56.4 0
6 682 49.0 ~13
7 681 42.5 ~25
表1  直径5, 6和7 mm的YC合金铸态圆棒横截面芯部的玻璃转变温度Tg, 晶化焓ΔH以及B2-CuZr相的体积分数Vf
图6  单相Zr47.2Cu46Al5Y1.8 BMG[27]与含25%B2-CuZr相的YC BMG复合材料的压缩工程应力-应变曲线
图7  含25%B2-CuZr相的YC BMG复合材料的拉伸工程应力-应变曲线
图8  含25%B2-CuZr相YC BMG复合材料拉伸样品断裂后侧面和断口形貌的SEM像
Sample No. Thickness B mm Width W mm KQ MPam1/2 Pmax/PQ 2.5(KQ/sy)2
1 3.01 6.03 65.4 1.09 3.9
2 2.96 6.03 60.4 1.00 3.4
3 3.01 6.02 59.1 1.00 3.2
表2  Zr48Cu45Al7 BMG三点弯曲断裂韧性测试结果
[1] Johnson W L. MRS Bull, 1999; 24: 42
[2] Ashby M F, Greer A L. Scr Mater, 2006; 54: 321
[3] Greer A L, Ma E. MRS Bull, 2007; 32: 611
[4] Argon A S. Acta Mater, 1979; 27: 47
[5] Schuh C A, Hufnagel T C, Ramamurty U. Acta Mater, 2007; 55: 4067
[6] Li Y, Poon S J, Shiflet G J, Xu J, Kim D H, L?ffler J F. MRS Bull, 2007; 32: 624
[7] Hays C C, Kim C P, Johnson W L. Phys Rev Lett, 2000; 84: 2901
[8] Szuecs F, Kim C P, Johnson W L. Acta Mater, 2001; 49: 1507
[9] Hofmann D C, Suh J Y, Wiest A, Duan G, Lind M L, Demetriou M D, Johnson W L. Nature, 2008; 451: 1085
[10] Hofmann D C, Suh J Y, Wiest A, Lind M L, Demetriou M D, Johnson W L. Proc Nat Acad Sci USA, 2008; 105: 20136
[11] Sun Y F, Wei B C, Wang Y R, Li W H, Cheung T L, Shek C H. Appl Phys Lett, 2005; 87: 051905
[12] Pauly S, Liu G, Wang G, Kuhn U, Mattern N, Eckert J. Acta Mater, 2009; 57: 5445
[13] Wu Y, Xiao Y H, Chen G L, Liu C T, Lu Z P. Adv Mater, 2010; 22: 2770
[14] Hofmann D C. Science, 2010; 329: 1294
[15] Wu Y, Wang H, Wu H H, Zhang Z Y, Hui X D, Chen G L, Ma D, Wang X L, Lu Z P. Acta Mater, 2011; 59: 2928
[16] Russell A M. Adv Eng Mater, 2003; 5: 629
[17] Gschneidner K, Russell A, Pecharsky A, Morris J, Zhang Z, Lograsso T, Hsu D, Lo C H C, Ye Y, Slager A, Kesse D. Nat Mater, 2003; 2: 587
[18] Wollmershauser J A, Kabra S, Agnew S R. Acta Mater, 2009; 57: 213
[19] Wang S G, Xu J. J Non-Cryst Solids, 2013; 379: 40
[20] Carvalho E M, Harris I R. J Mater Sci, 1980; 15: 1224
[21] Wu Y, Zhou D Q, Song W L, Wang H, Zhang Z Y, Ma D, Wang X L, Lu Z P. Phys Rev Lett, 2012; 109: 245506
[22] Wu Y, Wang H, Liu X J, Chen X H, Hui X D, Zhang Y, Lu Z P. J Mater Sci Technol, 2014; 30: 566
[23] Wu F F, Chan K C, Li S T, Wang G. J Mater Sci, 2014; 49: 2164
[24] Liu Z Q, Liu G, Qu R T, Zhang Z F, Wu S J, Zhang T. Sci Rep, 2014; 4: 4167
[25] Xu D H, Duan G, Johnson W L. Phys Rev Lett, 2004; 92: 245504
[26] Shen Y, Ma E, Xu J. J Mater Sci Technol, 2008; 24: 149
[27] Shen Y, Xu J. J Mater Res, 2010; 25: 375
[28] Johnson W L, Samwer K. Phys Rev Lett, 2005; 95: 195501
[29] Gao H L, Shen Y, Xu J. J Mater Res, 2011; 26: 2087
[30] He Q, Xu J. J Mater Sci Technol, 2012; 28: 1109
[31] He Q, Cheng Y Q, Ma E, Xu J. Acta Mater, 2011; 59: 202
[32] Yao J H, Wang J Q, Lu L, Li Y. Appl Phys Lett, 2008; 92: 041905
[33] Koval Y N, Firstov G S, Delaey L, Humbeeck J V. Scr Metall, 1994; 31: 799
[34] Park E S, Kim D H. Acta Mater, 2006; 54: 2597
[35] Chen S S, Zhang H R, Todd I. Scr Mater, 2014; 72-73: 47
[36] Park E S, Kyeong J S, Kim D H. Scr Mater, 2007; 57: 49
[37] Flores K M, Dauskardt R H. J Mech Phys Solids, 2006; 54: 2418
[38] Madge S V, Louzguine-Luzgin D V, Lewandowsi J J, Greer A L. Acta Mater, 2012; 60: 4800
[39] Tandaiya P, Ramamurty U, Narasimhan R. J Mech Phys Solids, 2009; 57: 1880
[40] He Q, Shang J K, Ma E, Xu J. Acta Mater, 2012; 60: 4940
[1] 马宗义, 肖伯律, 张峻凡, 朱士泽, 王东. 航天装备牵引下的铝基复合材料研究进展与展望[J]. 金属学报, 2023, 59(4): 457-466.
[2] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
[3] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[4] 沈莹莹, 张国兴, 贾清, 王玉敏, 崔玉友, 杨锐. SiCf/TiAl复合材料界面反应及热稳定性[J]. 金属学报, 2022, 58(9): 1150-1158.
[5] 谷瑞成, 张健, 张明阳, 刘艳艳, 王绍钢, 焦大, 刘增乾, 张哲峰. 三维互穿结构SiC晶须骨架增强镁基复合材料制备及其力学性能[J]. 金属学报, 2022, 58(7): 857-867.
[6] 潘成成, 张翔, 杨帆, 夏大海, 何春年, 胡文彬. 三维石墨烯/Cu复合材料在模拟海水环境中的腐蚀和空蚀行为[J]. 金属学报, 2022, 58(5): 599-609.
[7] 王浩伟, 赵德超, 汪明亮. 原位自生TiB2/Al基复合材料的腐蚀防护技术研究现状[J]. 金属学报, 2022, 58(4): 428-443.
[8] 张雷, 施韬, 黄火根, 张培, 张鹏国, 吴敏, 法涛. 铀基非晶复合材料的相分离与凝固序列研究[J]. 金属学报, 2022, 58(2): 225-230.
[9] 聂金凤, 伍玉立, 谢可伟, 刘相法. Al-AlN异构纳米复合材料的组织构型与热稳定性[J]. 金属学报, 2022, 58(11): 1497-1508.
[10] 陈润, 王帅, 安琦, 张芮, 刘文齐, 黄陆军, 耿林. 热挤压与热处理对网状TiBw/TC18复合材料组织及性能的影响[J]. 金属学报, 2022, 58(11): 1478-1488.
[11] 胡晨, 潘帅, 黄明欣. 高强高韧异质结构温轧TWIP[J]. 金属学报, 2022, 58(11): 1519-1526.
[12] 范根莲, 郭峙岐, 谭占秋, 李志强. 金属材料的构型化复合与强韧化[J]. 金属学报, 2022, 58(11): 1416-1426.
[13] 陈瑞润, 陈德志, 王琪, 王墅, 周哲丞, 丁宏升, 傅恒志. Nb-Si基超高温合金及其定向凝固工艺的研究进展[J]. 金属学报, 2021, 57(9): 1141-1154.
[14] 赵乃勤, 郭斯源, 张翔, 何春年, 师春生. 基于增强相构型设计的石墨烯/Cu复合材料研究进展[J]. 金属学报, 2021, 57(9): 1087-1106.
[15] 赵宇宏, 景舰辉, 陈利文, 徐芳泓, 侯华. 装甲防护陶瓷-金属叠层复合材料界面研究进展[J]. 金属学报, 2021, 57(9): 1107-1125.