|
|
金属玻璃的结构年轻化及其对力学行为的影响 |
蒋敏强1,2(), 高洋1,2 |
1.中国科学院力学研究所 非线性力学国家重点实验室 北京 100190 2.中国科学院大学 工程科学学院 北京 100049 |
|
Structural Rejuvenation of Metallic Glasses and Its Effect on Mechanical Behaviors |
JIANG Minqiang1,2(), GAO Yang1,2 |
1.State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China 2.School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China |
引用本文:
蒋敏强, 高洋. 金属玻璃的结构年轻化及其对力学行为的影响[J]. 金属学报, 2021, 57(4): 425-438.
Minqiang JIANG,
Yang GAO.
Structural Rejuvenation of Metallic Glasses and Its Effect on Mechanical Behaviors[J]. Acta Metall Sin, 2021, 57(4): 425-438.
1 |
Bernal J D. Geometry of the structure of monatomic liquids [J]. Nature, 1960, 185: 68
|
2 |
Luo W K, Sheng H W, Alamgir F M, et al. Icosahedral short-range order in amorphous alloys [J]. Phys. Rev. Lett., 2004, 92: 145502
|
3 |
Sheng H W, Luo W K, Alamgir F M, et al. Atomic packing and short-to-medium-range order in metallic glasses [J]. Nature, 2006, 439: 419
|
4 |
Ma D, Stoica A D, Wang X L. Power-law scaling and fractal nature of medium-range order in metallic glasses [J]. Nat. Mater., 2009, 8: 30
|
5 |
Hirata A, Guan P F, Fujita T, et al. Direct observation of local atomic order in a metallic glass [J]. Nat. Mater., 2011, 10: 28
|
6 |
Klement W, Willens R H, Duwez P. Non-crystalline structure in solidified gold-silicon alloys [J]. Nature, 1960, 187: 869
|
7 |
Inoue A, Zhang T, Masumoto T. Al-La-Ni amorphous alloys with a wide supercooled liquid region [J]. Mater. Trans., 1989, 30: 965
|
8 |
Inoue A, Zhang T, Nishiyama N, et al. Preparation of 16 mm diameter rod of amorphous Zr65Al7.5Ni10Cu17.5 alloy [J]. Mater. Trans., JIM, 1993, 34: 1234
|
9 |
Peker A, Johnson W L. A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 [J]. Appl. Phys. Lett., 1993, 63: 2342
|
10 |
Ma H, Shi L L, Xu J, et al. Discovering inch-diameter metallic glasses in three-dimensional composition space [J]. Appl. Phys. Lett., 2005, 87: 181915
|
11 |
Yao K F, Ruan F, Yang Y Q, et al. Superductile bulk metallic glass [J]. Appl. Phys. Lett., 2006, 88: 122106
|
12 |
Jiang M Q, Duan G H, Dai L H. Metallic glass nanofilms [J]. J. Non-Cryst. Solids, 2011, 357: 1621
|
13 |
Wu Y, Zhou D Q, Song W L, et al. Ductilizing bulk metallic glass composite by tailoring stacking fault energy [J]. Phys. Rev. Lett., 2012, 109: 245506
|
14 |
Luo P, Cao C R, Zhu F, et al. Ultrastable metallic glasses formed on cold substrates [J]. Nat. Commun., 2018, 9: 1389
|
15 |
Li M X, Zhao S F, Lu Z, et al. High-temperature bulk metallic glasses developed by combinatorial methods [J]. Nature, 2019, 569: 99
|
16 |
Song X, Xiao K L, Wu X Q, et al. Nanoparticles produced by nanosecond pulse laser ablation of a metallic glass in water [J]. J. Non-Cryst. Solids, 2019, 517: 119
|
17 |
Dyre J C. Heirs of liquid treasures [J]. Nat. Mater., 2004, 3: 749
|
18 |
Sun X, Mo G, Zhao L Z, et al. Characterization of nanoscale structural heterogeneity in an amorphous alloy by synchrotron small angle X-ray scattering [J]. Acta Phys. Sin., 2017, 66: 176109
|
18 |
孙 星, 默 广, 赵林志等. 小角X射线散射表征非晶合金纳米尺度结构非均匀 [J]. 物理学报, 2017, 66: 176109
|
19 |
Wei D, Yang J, Jiang M Q, et al. Assessing the utility of structure in amorphous materials [J]. J. Chem. Phys., 2019, 150: 114502
|
20 |
Wei D, Yang J, Jiang M Q, et al. Revisiting the structure-property relationship of metallic glasses: Common spatial correlation revealed as a hidden rule [J]. Phys. Rev., 2019, 99B: 014115
|
21 |
Wang Y J, Wei D, Han D, et al. Does structure determine property in amorphous solids? [J]. Chin J. Theor. Appl. Mech., 2020, 52: 303
|
21 |
王云江, 魏 丹, 韩 懂等. 非晶态固体的结构可以决定性能吗? [J]. 力学学报, 2020, 52: 303
|
22 |
Peng H L, Li M Z, Wang W H. Structural signature of plastic deformation in metallic glasses [J]. Phys. Rev. Lett., 2011, 106: 135503
|
23 |
Liu Y H, Wang D, Nakajima K, et al. Characterization of nanoscale mechanical heterogeneity in a metallic glass by dynamic force microscopy [J]. Phys. Rev. Lett., 2011, 106: 125504
|
24 |
Hu Y C, Li F X, Li M Z, et al. Five-fold symmetry as indicator of dynamic arrest in metallic glass-forming liquids [J]. Nat. Commun., 2015, 6: 8310
|
25 |
Jiang M Q, Peterlechner M, Wang Y J, et al. Universal structural softening in metallic glasses indicated by boson heat capacity peak [J]. Appl. Phys. Lett., 2017, 111: 261901
|
26 |
Yang J, Wang Y J, Ma E, et al. Structural parameter of orientational order to predict the boson vibrational anomaly in glasses [J]. Phys. Rev. Lett., 2019, 122: 015501
|
27 |
Han D, Wei D, Yang J, et al. Atomistic structural mechanism for the glass transition: Entropic contribution [J]. Phys. Rev., 2020, 101B: 014113
|
28 |
Jiang M Q, Dai L H. Intrinsic correlation between fragility and bulk modulus in metallic glasses [J]. Phys. Rev., 2007, 76B: 054204
|
29 |
Jang D C, Greer J R. Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses [J]. Nat. Mater., 2010, 9: 215
|
30 |
Trexler M M, Thadhani N N. Mechanical properties of bulk metallic glasses [J]. Prog. Mater. Sci., 2010, 55: 759
|
31 |
Tian L, Cheng Y Q, Shan Z W, et al. Approaching the ideal elastic limit of metallic glasses [J]. Nat. Commun., 2012, 3: 609
|
32 |
Jiang M Q, Wilde G, Dai L H. Origin of stress overshoot in amorphous solids [J]. Mech. Mater., 2015, 81: 72
|
33 |
Jiang M Q, Wei Y P, Wilde G, et al. Explosive boiling of a metallic glass superheated by nanosecond pulse laser ablation [J]. Appl. Phys. Lett., 2015, 106: 021904
|
34 |
Zhao Y C, Sun H, Li C L, et al. High temperature deformation behavior of high strength and toughness Ti-Ni base bulk metallic glass composites [J]. Acta Metall. Sin., 2018, 54: 1818
|
34 |
赵燕春, 孙 浩, 李春玲等. 高强韧Ti-Ni基块体金属玻璃复合材料高温变形行为 [J]. 金属学报, 2018, 54: 1818
|
35 |
Jin C R, Yang S Y, Deng X Y, et al. Effect of nano-crystallization on dynamic compressive property of Zr-based amorphous alloy [J]. Acta Metall. Sin., 2019, 55: 1561
|
35 |
金辰日, 杨素媛, 邓学元等. 纳米晶化对锆基非晶合金动态压缩性能的影响 [J]. 金属学报, 2019, 55: 1561
|
36 |
Yang J, Duan J, Wang Y J, et al. Complexity of plastic instability in amorphous solids: Insights from spatiotemporal evolution of vibrational modes [J]. Eur. Phys. J., 2020, 43E: 56
|
37 |
Conner R D, Dandliker R B, Scruggs V, et al. Dynamic deformation behavior of tungsten-fiber/metallic-glass matrix composites [J]. Int. J. Impact Eng., 2000, 24: 435
|
38 |
Grimberg A, Baur H, Bochsler P, et al. Solar wind neon from genesis: Implications for the lunar noble gas record [J]. Science, 2006, 314: 1133
|
39 |
Schroers J, Kumar G, Hodges T M, et al. Bulk metallic glasses for biomedical applications [J]. JOM, 2009, 61(9): 21
|
40 |
Huang X, Ling Z, Liu Z D, et al. Amorphous alloy reinforced Whipple shield structure [J]. Int. J. Impact Eng., 2012, 42: 1
|
41 |
Hofmann D C, Hamill L, Christiansen E, et al. Hypervelocity impact testing of a metallic glass-stuffed Whipple shield [J]. Adv. Eng. Mater., 2015, 17: 1313
|
42 |
Jiang M Q, Huang B M, Jiang Z J, et al. Joining of bulk metallic glass to brass by thick-walled cylinder explosion [J]. Scr. Mater., 2015, 97: 17
|
43 |
Yan W, Richard I, Kurtuldu G, et al. Structured nanoscale metallic glass fibres with extreme aspect ratios [J]. Nat. Nanotechnol., 2020, 15: 875
|
44 |
Yu B S, Sun Y H, Bai H Y, et al. Highly energetic and flammable metallic glasses [J]. Sci. China Phys. Mech. Astron., 2020, 63: 276112
|
45 |
Liu Y H, Wang G, Pan M X, et al. Deformation behaviors and mechanism of Ni-Co-Nb-Ta bulk metallic glasses with high strength and plasticity [J]. J. Mater. Res., 2007, 22: 869
|
46 |
Wang W H. Bulk metallic glasses with functional physical properties [J]. Adv. Mater., 2009, 21: 4524
|
47 |
Wang W H. The elastic properties, elastic models and elastic perspectives of metallic glasses [J]. Prog. Mater. Sci., 2012, 57: 487
|
48 |
Liang X B, Fan J W, Zhang Z B, et al. Microstructure and corrosion properties of aluminum base amorphous and nanocrystalline composite coating [J]. Acta Metall. Sin., 2018, 54: 1193
|
48 |
梁秀兵, 范建文, 张志彬等. 铝基非晶纳米晶复合涂层显微组织与腐蚀性能研究 [J]. 金属学报, 2018, 54: 1193
|
49 |
Zhao Y C, Mao X J, Li W S, et al. Microstructure and corrosion behavior of Fe-15Mn-5Si-14Cr-0.2C amorphous steel [J]. Acta Metall. Sin., 2020, 56: 715
|
49 |
赵燕春, 毛雪晶, 李文生等. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为 [J]. 金属学报, 2020, 56: 715
|
50 |
Jiang M Q, Jiang F, Keryvin V, et al. Relation between ideal and real strengths of metallic glasses [J]. J. Non-Cryst. Solids, 2012, 358: 3119
|
51 |
Jiang M Q, Dai L H. On the origin of shear banding instability in metallic glasses [J]. J. Mech. Phys. Solids, 2009, 57: 1267
|
52 |
Jiang M Q, Wang W H, Dai L H. Prediction of shear-band thickness in metallic glasses [J]. Scr. Mater., 2009, 60: 1004
|
53 |
Jiang M Q, Dai L H. Shear-band toughness of bulk metallic glasses [J]. Acta Mater., 2011, 59: 4525
|
54 |
Greer A L, Cheng Y Q, Ma E. Shear bands in metallic glasses [J]. Mater. Sci. Eng., 2013, R74: 71
|
55 |
Jiang M Q, Ling Z, Meng J X, et al. Energy dissipation in fracture of bulk metallic glasses via inherent competition between local softening and quasi-cleavage [J]. Philos. Mag., 2008, 88: 407
|
56 |
Jiang M Q, Meng J X, Keryvin V, et al. Crack branching instability and directional stability in dynamic fracture of a tough bulk metallic glass [J]. Intermetallics, 2011, 19: 1775
|
57 |
Jiang M Q, Dai L H. The “tension transformation zone” model of amorphous alloys [J]. Chin. Sci. Bull., 2017, 62: 2346
|
58 |
Amir A, Oreg Y, Imry Y. On relaxations and aging of various glasses [J]. Proc. Natl. Acad. Sci. USA, 2012, 109: 1850
|
59 |
Gallino I, Busch R. Relaxation pathways in metallic glasses [J]. JOM, 2017, 69: 2171
|
60 |
Ruta B, Pineda E, Evenson Z. Relaxation processes and physical aging in metallic glasses [J]. J. Phys.: Condens. Matter, 2017, 29: 503002
|
61 |
Lee S C, Lee C M, Lee J C, et al. Structural disordering process of an amorphous alloy driven by the elastostatic compression at room temperature [J]. Appl. Phys. Lett., 2008, 92: 151906
|
62 |
Park K W, Lee C M, Wakeda M, et al. Elastostatically induced structural disordering in amorphous alloys [J]. Acta Mater., 2008, 56: 5440
|
63 |
Park K W, Lee C M, Lee M R, et al. Paradoxical phenomena between the homogeneous and inhomogeneous deformations of metallic glasses [J]. Appl. Phys. Lett., 2009, 94: 021907
|
64 |
Zhang Y, Wang W H, Greer A L. Making metallic glasses plastic by control of residual stress [J]. Nat. Mater., 2006, 5: 857
|
65 |
Concustell A, Méar F O, Suriñach S, et al. Structural relaxation and rejuvenation in a metallic glass induced by shot-peening [J]. Philos. Mag. Lett., 2009, 89: 831
|
66 |
González S, Fornell J, Pellicer E, et al. Influence of the shot-peening intensity on the structure and near-surface mechanical properties of Ti40Zr10Cu38Pd12 bulk metallic glass [J]. Appl. Phys. Lett., 2013, 103: 211907
|
67 |
Lee M H, Lee K S, Das J, et al. Improved plasticity of bulk metallic glasses upon cold rolling [J]. Scr. Mater., 2010, 62: 678
|
68 |
Haruyama O, Kisara K, Yamashita A, et al. Characterization of free volume in cold-rolled Zr55Cu30Ni5Al10 bulk metallic glasses [J]. Acta Mater., 2013, 61: 3224
|
69 |
Xu Y L, Shi B, Ma Z K, et al. Evolution of shear bands, free volume, and structure in room temperature rolled Pd40Ni40P20 bulk metallic glass [J]. Mater. Sci. Eng., 2015, A623: 145
|
70 |
Ketov S V, Sun Y H, Nachum S, et al. Rejuvenation of metallic glasses by non-affine thermal strain [J]. Nature, 2015, 524: 200
|
71 |
Xiao H B, Wang X D, Zhang P, et al. Contribution of cryogenic thermal cycling to the atomic dynamics in a La-based bulk metallic glass with different initial states [J]. J. Appl. Phys., 2020, 127: 205104
|
72 |
Dmowski W, Yokoyama Y, Chuang A, et al. Structural rejuvenation in a bulk metallic glass induced by severe plastic deformation [J]. Acta Mater., 2010, 58: 429
|
73 |
Meng F Q, Tsuchiya K, Seiichiro II, et al. Reversible transition of deformation mode by structural rejuvenation and relaxation in bulk metallic glass [J]. Appl. Phys. Lett., 2012, 101: 121914
|
74 |
Zhou H B, Hubek R, Peterlechner M, et al. Two-stage rejuvenation and the correlation between rejuvenation behavior and the boson heat capacity peak of a bulk metallic glass [J]. Acta Mater., 2019, 179: 308
|
75 |
Tong Y, Dmowski W, Yokoyama Y, et al. Recovering compressive plasticity of bulk metallic glasses by high-temperature creep [J]. Scr. Mater., 2013, 69: 570
|
76 |
Tong Y, Dmowski W, Bei H, et al. Mechanical rejuvenation in bulk metallic glass induced by thermo-mechanical creep [J]. Acta Mater., 2018, 148: 384
|
77 |
Pan J, Wang Y X, Guo Q, et al. Extreme rejuvenation and softening in a bulk metallic glass [J]. Nat. Commun., 2018, 9: 560
|
78 |
Pan J, Ivanov Y P, Zhou W H, et al. Strain-hardening and suppression of shear-banding in rejuvenated bulk metallic glass [J]. Nature, 2020, 578: 559
|
79 |
Turnbull D. Kinetics of solidification of supercooled liquid mercury droplets [J]. J. Chem. Phys., 1952, 20: 411
|
80 |
Turnbull D, Cohen M H. Free-volume model of the amorphous phase: Glass transition [J]. J. Chem. Phys., 1961, 34: 120
|
81 |
Debenedetti P G, Stillinger F H. Supercooled liquids and the glass transition [J]. Nature, 2001, 410: 259
|
82 |
Kauzmann W. The nature of the glassy state and the behavior of liquids at low temperatures [J]. Chem. Rev., 1948, 43: 219
|
83 |
Harmon J S, Demetriou M D, Johnson W L, et al. Deformation of glass forming metallic liquids: Configurational changes and their relation to elastic softening [J]. Appl. Phys. Lett., 2007, 90: 131912
|
84 |
Tong Y, Iwashita T, Dmowski W, et al. Structural rejuvenation in bulk metallic glasses [J]. Acta Mater., 2015, 86: 240
|
85 |
Sun Y H, Concustell A, Greer A L. Thermomechanical processing of metallic glasses: Extending the range of the glassy state [J]. Nat. Rev. Mater., 2016, 1: 16039
|
86 |
Bouchaud J P, Dupuis V, Hammann J, et al. Separation of time and length scales in spin glasses: Temperature as a microscope [J]. Phys. Rev., 2001, 65B: 024439
|
87 |
Wolynes P G. Spatiotemporal structures in aging and rejuvenating glasses [J]. Proc. Natl. Acad. Sci. USA, 2009, 106: 1353
|
88 |
Méar F O, Lenk B, Zhang Y, et al. Structural relaxation in a heavily cold-worked metallic glass [J]. Scr. Mater., 2008, 59: 1243
|
89 |
Battezzati L, Riontino G, Baricco M, et al. A DSC study of structural relaxation in metallic glasses prepared with different quenching rates [J]. J. Non-Cryst. Solids, 1984, 61-62: 877
|
90 |
Lee J C. Calorimetric study of β-relaxation in an amorphous alloy: An experimental technique for measuring the activation energy for shear transformation [J]. Intermetallics, 2014, 44: 116
|
91 |
Park K W, Lee C M, Wakeda M, et al. Homogeneous deformation of bulk amorphous alloys during elastostatic compression and its packing density dependence [J]. Scr. Mater., 2008, 59: 710
|
92 |
Louzguine-Luzgin D V, Zadorozhnyy V Y, Ketov S V, et al. On room-temperature quasi-elastic mechanical behaviour of bulk metallic glasses [J]. Acta Mater., 2017, 129: 343
|
93 |
Cao Q P, Li J F, Zhou Y H, et al. Free-volume evolution and its temperature dependence during rolling of Cu60Zr20Ti20 bulk metallic glass [J]. Appl. Phys. Lett., 2005, 87: 101901
|
94 |
Cao Q P, Li J F, Zhou Y H, et al. Mechanically driven phase separation and corresponding microhardness change in Cu60Zr20Ti20 bulk metallic glass [J]. Appl. Phys. Lett., 2005, 86: 081913
|
95 |
Ebner C, Escher B, Gammer C, et al. Structural and mechanical characterization of heterogeneities in a CuZr-based bulk metallic glass processed by high pressure torsion [J]. Acta Mater., 2018, 160: 147
|
96 |
Flores K M, Dauskardt R H. Mean stress effects on flow localization and failure in a bulk metallic glass [J]. Acta Mater., 2001, 49: 2527
|
97 |
Qu R T, Calin M, Eckert J, et al. Metallic glasses: Notch-insensitive materials [J]. Scr. Mater., 2012, 66: 733
|
98 |
Li W D, Bei H B, Gao Y F. Effects of geometric factors and shear band patterns on notch sensitivity in bulk metallic glasses [J]. Intermetallics, 2016, 79: 12
|
99 |
Ding G, Li C, Zaccone A, et al. Ultrafast extreme rejuvenation of metallic glasses by shock compression [J]. Sci. Adv., 2019, 5: eaaw6249
|
100 |
Saida J, Yamada R, Wakeda M, et al. Thermal rejuvenation in metallic glasses [J]. Sci. Technol. Adv. Mater., 2017, 18: 152
|
101 |
Wakeda M, Saida J, Li J, et al. Controlled rejuvenation of amorphous metals with thermal processing [J]. Sci. Rep., 2015, 5: 10545
|
102 |
Kovacs A J. Transition vitreuse dans les polymères amorphes. Etude phénoménologique [J]. Adv. Polym. Sci., 1963, 3: 394
|
103 |
Das A, Dufresne E M, Maaß R. Structural dynamics and rejuvenation during cryogenic cycling in a Zr-based metallic glass [J]. Acta Mater., 2020, 196: 723
|
104 |
Wang C, Yang Z Z, Ma T, et al. High stored energy of metallic glasses induced by high pressure [J]. Appl. Phys. Lett., 2017, 110: 111901
|
105 |
Miyazaki N, Wakeda M, Wang Y J, et al. Prediction of pressure-promoted thermal rejuvenation in metallic glasses [J]. npj Comput. Mater., 2016, 2: 16013
|
106 |
Yokoyama Y, Yamasaki T, Liaw P K, et al. Study of the structural relaxation-induced embrittlement of hypoeutectic Zr-Cu-Al ternary bulk glassy alloys [J]. Acta Mater., 2008, 56: 6097
|
107 |
Wu T W, Spaepen F. The relation between enbrittlement and structural relaxation of an amorphous metal [J]. Philos. Mag., 1990, 61B: 739
|
108 |
Jin H J, Gu X J, Wen P, et al. Pressure effect on the structural relaxation and glass transition in metallic glasses [J]. Acta Mater., 2003, 51: 6219
|
109 |
Lee S J, Yoo B G, Jang J I, et al. Irreversible structural change induced by elastostatic stress imposed on an amorphous alloy and its influence on the mechanical properties [J]. Met. Mater. Int., 2008, 14: 9
|
110 |
Zhang M, Wang Y M, Li F X, et al. Mechanical relaxation-to-rejuvenation transition in a Zr-based bulk metallic glass [J]. Sci. Rep., 2017, 7: 625
|
111 |
Spaepen F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses [J]. Acta Metall. Mater., 1977, 25: 407
|
112 |
Argon A S. Plastic deformation in metallic glasses [J]. Acta Metall., 1979, 27: 47
|
113 |
Langer J S. Dynamics of shear-transformation zones in amorphous plasticity: Formulation in terms of an effective disorder temperature [J]. Phys. Rev., 2004, 70E: 041502
|
114 |
Jiang M Q, Jiang S Y, Ling Z, et al. Smaller Deborah number inducing more serrated plastic flow of metallic glass [J]. Comp. Mater. Sci., 2009, 46: 767
|
115 |
Gao Y F. An implicit finite element method for simulating inhomogeneous deformation and shear bands of amorphous alloys based on the free-volume model [J]. Modell. Simul. Mater. Sci. Eng., 2006, 14: 1329
|
116 |
Jiang M Q, Wilde G, Dai L H. Shear band dilatation in amorphous alloys [J]. Scr. Mater., 2017, 127: 54
|
117 |
Sun X, Ding G, Mo G, et al. Dilatancy signatures of amorphous plasticity probed by X-ray synchrotron radiation [J]. Intermetallics, 2019, 107: 34
|
118 |
Lu Y Z, Jiang M Q, Lu X, et al. Dilatancy of shear transformations in a colloidal glass [J]. Phys. Rev. Appl., 2018, 9: 014023
|
119 |
Scalliet C, Berthier L. Rejuvenation and memory effects in a structural glass [J]. Phys. Rev. Lett., 2019, 122: 255502
|
120 |
Lunkenheimer P, Schneider U, Brand R, et al. Glassy dynamics [J]. Contemp. Phys., 2000, 41: 15
|
121 |
Küchemann S, Maaß R. Gamma relaxation in bulk metallic glasses [J]. Scr. Mater., 2017, 137: 5
|
122 |
Song L J, Xu W, Huo J T, et al. Activation entropy as a key factor controlling the memory effect in glasses [J]. Phys. Rev. Lett., 2020, 125: 135501
|
123 |
Luo P, Li Y Z, Bai H Y, et al. Memory effect manifested by a boson peak in metallic glass [J]. Phys. Rev. Lett., 2016, 116: 175901
|
124 |
Lee S C, Lee C M, Yang J W, et al. Microstructural evolution of an elastostatically compressed amorphous alloy and its influence on the mechanical properties [J]. Scr. Mater., 2008, 58: 591
|
125 |
Guo W, Yamada R, Saida J. Rejuvenation and plasticization of metallic glass by deep cryogenic cycling treatment [J]. Intermetallics, 2018, 93: 141
|
126 |
Ke H B, Wen P, Peng H L, et al. Homogeneous deformation of metallic glass at room temperature reveals large dilatation [J]. Scr. Mater., 2011, 64: 966
|
127 |
Gelin S, Tanaka H, Lemaître A. Anomalous phonon scattering and elastic correlations in amorphous solids [J]. Nat. Mater., 2016, 15: 1177
|
128 |
Schirmacher W, Ruocco G, Scopigno T. Acoustic attenuation in glasses and its relation with the boson peak [J]. Phys. Rev. Lett., 2007, 98: 025501
|
129 |
Shintani H, Tanaka H. Universal link between the boson peak and transverse phonons in glass [J]. Nat. Mater., 2008, 7: 870
|
130 |
Luo P, Wen P, Bai H Y, et al. Relaxation decoupling in metallic glasses at low temperatures [J]. Phys. Rev. Lett., 2017, 118: 225901
|
131 |
Qiao J C, Wang Y J, Zhao L Z, et al. Transition from stress-driven to thermally activated stress relaxation in metallic glasses [J]. Phys. Rev., 2016, 94B: 104203
|
132 |
Yuan C C, Lv Z W, Pang C M, et al. Ultrasonic-assisted plastic flow in a Zr-based metallic glass [J]. Sci. China Mater., 2020, 64: 448
|
133 |
Huang B, Ge T P, Liu G L, et al. Density fluctuations with fractal order in metallic glasses detected by synchrotron X-ray nano-computed tomography [J]. Acta Mater., 2018, 155: 69
|
134 |
Ross P, Küchemann S, Derlet P M, et al. Linking macroscopic rejuvenation to nano-elastic fluctuations in a metallic glass [J]. Acta Mater., 2017, 138: 111
|
135 |
Suzuki Y, Haimovich J, Egami T. Bond-orientational anisotropy in metallic glasses observed by X-ray diffraction [J]. Phys. Rev., 1987, 35B: 2162
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|