Please wait a minute...
金属学报  2021, Vol. 57 Issue (4): 425-438    DOI: 10.11900/0412.1961.2020.00431
  综述 本期目录 | 过刊浏览 |
金属玻璃的结构年轻化及其对力学行为的影响
蒋敏强1,2(), 高洋1,2
1.中国科学院力学研究所 非线性力学国家重点实验室 北京 100190
2.中国科学院大学 工程科学学院 北京 100049
Structural Rejuvenation of Metallic Glasses and Its Effect on Mechanical Behaviors
JIANG Minqiang1,2(), GAO Yang1,2
1.State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
2.School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
引用本文:

蒋敏强, 高洋. 金属玻璃的结构年轻化及其对力学行为的影响[J]. 金属学报, 2021, 57(4): 425-438.
Minqiang JIANG, Yang GAO. Structural Rejuvenation of Metallic Glasses and Its Effect on Mechanical Behaviors[J]. Acta Metall Sin, 2021, 57(4): 425-438.

全文: PDF(1990 KB)   HTML
摘要: 

金属玻璃是高温合金熔体深度过冷至玻璃态转变温度,其内部原子构型来不及有序结晶而形成的玻璃态固体。这类金属键的玻璃体系在原子排列上不存在长程周期性,在热力学上处于远离平衡的亚稳态,在动力学上处于阻塞态。这些特征赋予金属玻璃一系列优异的力学、物理、化学等性能,比如,具有接近理想极限的高强度。然而,金属玻璃的室温塑性变形极易局域化形成纳米尺度的剪切带,导致其宏观塑性十分有限。此外,自发的物理老化会使系统向低能量的平衡有序态转变,进一步削弱金属玻璃在服役过程中的塑性变形能力,表现出老化脆性。近年来,有研究表明,外部能量的输入能够使金属玻璃的结构发生“年轻化”,从而达到在拓扑上更加无序的高焓状态。这一反物理老化过程能够有效改善金属玻璃的塑性变形能力,有望同时解决制约这类材料实际应用的剪切带和老化问题。因此,这方面的研究受到越来越多的关注。本文从玻璃的老化和年轻化概念出发,首先介绍了实现金属玻璃结构年轻化的主要方法,随后总结了影响年轻化的各种因素以及结构年轻化对金属玻璃塑性及其他力学行为的影响,并对金属玻璃结构年轻化的物理机制进行了评述。最后,对金属玻璃结构年轻化方面的研究进行了简要总结,并展望了该方面值得进一步研究的若干问题。

关键词 金属玻璃结构弛豫年轻化剪切带力学行为    
Abstract

Metallic glasses (MGs) are formed by the deep undercooling of high-temperature melt up to the glass transition temperature, and this process avoids the crystallization of the melt into ordered configurations of atoms. The atomic packing of MGs lacks a long-range periodicity. MGs reside at metastable energy states far away from the equilibrium of thermodynamics, but they are jammed in dynamics. These features provide MGs with remarkable mechanical, physical, and chemical properties, such as very high strength that is close to the ideal limit. However, the plastic deformation of MGs at room temperature is easily localized to form nanoscale shear bands, thereby resulting in limited macroscopic plasticity. Moreover, physical ageing spontaneously reduces their energies toward an equilibrium state, thereby further weakening the plastic deformation ability of MGs, which is known as ageing-induced brittleness. Recent studies have shown that MGs can be rejuvenated with external energy injection into more disordered high-energy states in structure. This process, which is the inverse of physical ageing, can effectively improve the global plasticity of MGs and is expected to solve the problems of shear banding and physical ageing that restrict the applications of such materials. Therefore, the relevant aspects of the rejuvenation of MGs have attracted increasing interest. This article first introduces methods for the rejuvenation of MGs starting from the concepts of ageing and rejuvenation of glasses, and then summarizes the influencing factors of rejuvenation and the effects of rejuvenation on plasticity and other mechanical behaviors of MGs. Furthemore, the physical mechanism of rejuvenation is discussed briefly. Finally, several conclusions are drawn in this field, and some important problems that deserve further investigation are proposed.

Key wordsmetallic glass    structural relaxation    rejuvenation    shear band    mechanical behavior
收稿日期: 2020-10-30     
ZTFLH:  TG139  
基金资助:国家自然科学基金项目(11972345);国家自然科学基金基础科学中心项目(11988102)
作者简介: 蒋敏强,男,1979年生,研究员,博士
图1  高温合金熔体在晶化、过冷-玻璃态转变、物理老化和年轻化过程中热力学焓或熵的演化示意图
图2  初始态及弛豫态样品的比热曲线示意图
图3  实现金属玻璃超快年轻化的双靶板平板撞击技术和应力波设计[99]
图4  在冲击压缩加载作用下,载荷幅值对一种锆基金属玻璃结构年轻化的影响[99]
图5  2种Cu-Zr金属玻璃在弹性静态压缩加载情况下加载时间对年轻化的影响[62]
图6  基于年轻化方法的金属玻璃塑性调控[75,124](a) elastostatic compression[124] (b) thermo-mechanical creep[75]
图7  年轻化对金属玻璃弹性模量、硬度、初始屈服强度和塑性变形的影响[99,105,125,126]
图8  铸态及年轻态锆基金属玻璃的Boson峰[99],及Boson峰高度与过剩弛豫焓和有效无序温度的关系[74]
图9  金属玻璃结构年轻化的弛豫动力学行为:0.15Tg到Tg范围一种锆基金属玻璃的弛豫谱[121],及金属玻璃动力学弛豫模式的Arrhenius图[130](a) relaxation spectrum for a Zr-based bulk metallic glass between 0.15Tg and Tg[121](b) schematic Arrhenius diagram concerning dynamical behaviors of metallic glasses[130]
图10  一种锆基金属玻璃年轻态结构的高分辨透射电子显微镜观测和选区电子衍射花样,以及径向分布函数[99]
1 Bernal J D. Geometry of the structure of monatomic liquids [J]. Nature, 1960, 185: 68
2 Luo W K, Sheng H W, Alamgir F M, et al. Icosahedral short-range order in amorphous alloys [J]. Phys. Rev. Lett., 2004, 92: 145502
3 Sheng H W, Luo W K, Alamgir F M, et al. Atomic packing and short-to-medium-range order in metallic glasses [J]. Nature, 2006, 439: 419
4 Ma D, Stoica A D, Wang X L. Power-law scaling and fractal nature of medium-range order in metallic glasses [J]. Nat. Mater., 2009, 8: 30
5 Hirata A, Guan P F, Fujita T, et al. Direct observation of local atomic order in a metallic glass [J]. Nat. Mater., 2011, 10: 28
6 Klement W, Willens R H, Duwez P. Non-crystalline structure in solidified gold-silicon alloys [J]. Nature, 1960, 187: 869
7 Inoue A, Zhang T, Masumoto T. Al-La-Ni amorphous alloys with a wide supercooled liquid region [J]. Mater. Trans., 1989, 30: 965
8 Inoue A, Zhang T, Nishiyama N, et al. Preparation of 16 mm diameter rod of amorphous Zr65Al7.5Ni10Cu17.5 alloy [J]. Mater. Trans., JIM, 1993, 34: 1234
9 Peker A, Johnson W L. A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 [J]. Appl. Phys. Lett., 1993, 63: 2342
10 Ma H, Shi L L, Xu J, et al. Discovering inch-diameter metallic glasses in three-dimensional composition space [J]. Appl. Phys. Lett., 2005, 87: 181915
11 Yao K F, Ruan F, Yang Y Q, et al. Superductile bulk metallic glass [J]. Appl. Phys. Lett., 2006, 88: 122106
12 Jiang M Q, Duan G H, Dai L H. Metallic glass nanofilms [J]. J. Non-Cryst. Solids, 2011, 357: 1621
13 Wu Y, Zhou D Q, Song W L, et al. Ductilizing bulk metallic glass composite by tailoring stacking fault energy [J]. Phys. Rev. Lett., 2012, 109: 245506
14 Luo P, Cao C R, Zhu F, et al. Ultrastable metallic glasses formed on cold substrates [J]. Nat. Commun., 2018, 9: 1389
15 Li M X, Zhao S F, Lu Z, et al. High-temperature bulk metallic glasses developed by combinatorial methods [J]. Nature, 2019, 569: 99
16 Song X, Xiao K L, Wu X Q, et al. Nanoparticles produced by nanosecond pulse laser ablation of a metallic glass in water [J]. J. Non-Cryst. Solids, 2019, 517: 119
17 Dyre J C. Heirs of liquid treasures [J]. Nat. Mater., 2004, 3: 749
18 Sun X, Mo G, Zhao L Z, et al. Characterization of nanoscale structural heterogeneity in an amorphous alloy by synchrotron small angle X-ray scattering [J]. Acta Phys. Sin., 2017, 66: 176109
18 孙 星, 默 广, 赵林志等. 小角X射线散射表征非晶合金纳米尺度结构非均匀 [J]. 物理学报, 2017, 66: 176109
19 Wei D, Yang J, Jiang M Q, et al. Assessing the utility of structure in amorphous materials [J]. J. Chem. Phys., 2019, 150: 114502
20 Wei D, Yang J, Jiang M Q, et al. Revisiting the structure-property relationship of metallic glasses: Common spatial correlation revealed as a hidden rule [J]. Phys. Rev., 2019, 99B: 014115
21 Wang Y J, Wei D, Han D, et al. Does structure determine property in amorphous solids? [J]. Chin J. Theor. Appl. Mech., 2020, 52: 303
21 王云江, 魏 丹, 韩 懂等. 非晶态固体的结构可以决定性能吗? [J]. 力学学报, 2020, 52: 303
22 Peng H L, Li M Z, Wang W H. Structural signature of plastic deformation in metallic glasses [J]. Phys. Rev. Lett., 2011, 106: 135503
23 Liu Y H, Wang D, Nakajima K, et al. Characterization of nanoscale mechanical heterogeneity in a metallic glass by dynamic force microscopy [J]. Phys. Rev. Lett., 2011, 106: 125504
24 Hu Y C, Li F X, Li M Z, et al. Five-fold symmetry as indicator of dynamic arrest in metallic glass-forming liquids [J]. Nat. Commun., 2015, 6: 8310
25 Jiang M Q, Peterlechner M, Wang Y J, et al. Universal structural softening in metallic glasses indicated by boson heat capacity peak [J]. Appl. Phys. Lett., 2017, 111: 261901
26 Yang J, Wang Y J, Ma E, et al. Structural parameter of orientational order to predict the boson vibrational anomaly in glasses [J]. Phys. Rev. Lett., 2019, 122: 015501
27 Han D, Wei D, Yang J, et al. Atomistic structural mechanism for the glass transition: Entropic contribution [J]. Phys. Rev., 2020, 101B: 014113
28 Jiang M Q, Dai L H. Intrinsic correlation between fragility and bulk modulus in metallic glasses [J]. Phys. Rev., 2007, 76B: 054204
29 Jang D C, Greer J R. Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses [J]. Nat. Mater., 2010, 9: 215
30 Trexler M M, Thadhani N N. Mechanical properties of bulk metallic glasses [J]. Prog. Mater. Sci., 2010, 55: 759
31 Tian L, Cheng Y Q, Shan Z W, et al. Approaching the ideal elastic limit of metallic glasses [J]. Nat. Commun., 2012, 3: 609
32 Jiang M Q, Wilde G, Dai L H. Origin of stress overshoot in amorphous solids [J]. Mech. Mater., 2015, 81: 72
33 Jiang M Q, Wei Y P, Wilde G, et al. Explosive boiling of a metallic glass superheated by nanosecond pulse laser ablation [J]. Appl. Phys. Lett., 2015, 106: 021904
34 Zhao Y C, Sun H, Li C L, et al. High temperature deformation behavior of high strength and toughness Ti-Ni base bulk metallic glass composites [J]. Acta Metall. Sin., 2018, 54: 1818
34 赵燕春, 孙 浩, 李春玲等. 高强韧Ti-Ni基块体金属玻璃复合材料高温变形行为 [J]. 金属学报, 2018, 54: 1818
35 Jin C R, Yang S Y, Deng X Y, et al. Effect of nano-crystallization on dynamic compressive property of Zr-based amorphous alloy [J]. Acta Metall. Sin., 2019, 55: 1561
35 金辰日, 杨素媛, 邓学元等. 纳米晶化对锆基非晶合金动态压缩性能的影响 [J]. 金属学报, 2019, 55: 1561
36 Yang J, Duan J, Wang Y J, et al. Complexity of plastic instability in amorphous solids: Insights from spatiotemporal evolution of vibrational modes [J]. Eur. Phys. J., 2020, 43E: 56
37 Conner R D, Dandliker R B, Scruggs V, et al. Dynamic deformation behavior of tungsten-fiber/metallic-glass matrix composites [J]. Int. J. Impact Eng., 2000, 24: 435
38 Grimberg A, Baur H, Bochsler P, et al. Solar wind neon from genesis: Implications for the lunar noble gas record [J]. Science, 2006, 314: 1133
39 Schroers J, Kumar G, Hodges T M, et al. Bulk metallic glasses for biomedical applications [J]. JOM, 2009, 61(9): 21
40 Huang X, Ling Z, Liu Z D, et al. Amorphous alloy reinforced Whipple shield structure [J]. Int. J. Impact Eng., 2012, 42: 1
41 Hofmann D C, Hamill L, Christiansen E, et al. Hypervelocity impact testing of a metallic glass-stuffed Whipple shield [J]. Adv. Eng. Mater., 2015, 17: 1313
42 Jiang M Q, Huang B M, Jiang Z J, et al. Joining of bulk metallic glass to brass by thick-walled cylinder explosion [J]. Scr. Mater., 2015, 97: 17
43 Yan W, Richard I, Kurtuldu G, et al. Structured nanoscale metallic glass fibres with extreme aspect ratios [J]. Nat. Nanotechnol., 2020, 15: 875
44 Yu B S, Sun Y H, Bai H Y, et al. Highly energetic and flammable metallic glasses [J]. Sci. China Phys. Mech. Astron., 2020, 63: 276112
45 Liu Y H, Wang G, Pan M X, et al. Deformation behaviors and mechanism of Ni-Co-Nb-Ta bulk metallic glasses with high strength and plasticity [J]. J. Mater. Res., 2007, 22: 869
46 Wang W H. Bulk metallic glasses with functional physical properties [J]. Adv. Mater., 2009, 21: 4524
47 Wang W H. The elastic properties, elastic models and elastic perspectives of metallic glasses [J]. Prog. Mater. Sci., 2012, 57: 487
48 Liang X B, Fan J W, Zhang Z B, et al. Microstructure and corrosion properties of aluminum base amorphous and nanocrystalline composite coating [J]. Acta Metall. Sin., 2018, 54: 1193
48 梁秀兵, 范建文, 张志彬等. 铝基非晶纳米晶复合涂层显微组织与腐蚀性能研究 [J]. 金属学报, 2018, 54: 1193
49 Zhao Y C, Mao X J, Li W S, et al. Microstructure and corrosion behavior of Fe-15Mn-5Si-14Cr-0.2C amorphous steel [J]. Acta Metall. Sin., 2020, 56: 715
49 赵燕春, 毛雪晶, 李文生等. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为 [J]. 金属学报, 2020, 56: 715
50 Jiang M Q, Jiang F, Keryvin V, et al. Relation between ideal and real strengths of metallic glasses [J]. J. Non-Cryst. Solids, 2012, 358: 3119
51 Jiang M Q, Dai L H. On the origin of shear banding instability in metallic glasses [J]. J. Mech. Phys. Solids, 2009, 57: 1267
52 Jiang M Q, Wang W H, Dai L H. Prediction of shear-band thickness in metallic glasses [J]. Scr. Mater., 2009, 60: 1004
53 Jiang M Q, Dai L H. Shear-band toughness of bulk metallic glasses [J]. Acta Mater., 2011, 59: 4525
54 Greer A L, Cheng Y Q, Ma E. Shear bands in metallic glasses [J]. Mater. Sci. Eng., 2013, R74: 71
55 Jiang M Q, Ling Z, Meng J X, et al. Energy dissipation in fracture of bulk metallic glasses via inherent competition between local softening and quasi-cleavage [J]. Philos. Mag., 2008, 88: 407
56 Jiang M Q, Meng J X, Keryvin V, et al. Crack branching instability and directional stability in dynamic fracture of a tough bulk metallic glass [J]. Intermetallics, 2011, 19: 1775
57 Jiang M Q, Dai L H. The “tension transformation zone” model of amorphous alloys [J]. Chin. Sci. Bull., 2017, 62: 2346
58 Amir A, Oreg Y, Imry Y. On relaxations and aging of various glasses [J]. Proc. Natl. Acad. Sci. USA, 2012, 109: 1850
59 Gallino I, Busch R. Relaxation pathways in metallic glasses [J]. JOM, 2017, 69: 2171
60 Ruta B, Pineda E, Evenson Z. Relaxation processes and physical aging in metallic glasses [J]. J. Phys.: Condens. Matter, 2017, 29: 503002
61 Lee S C, Lee C M, Lee J C, et al. Structural disordering process of an amorphous alloy driven by the elastostatic compression at room temperature [J]. Appl. Phys. Lett., 2008, 92: 151906
62 Park K W, Lee C M, Wakeda M, et al. Elastostatically induced structural disordering in amorphous alloys [J]. Acta Mater., 2008, 56: 5440
63 Park K W, Lee C M, Lee M R, et al. Paradoxical phenomena between the homogeneous and inhomogeneous deformations of metallic glasses [J]. Appl. Phys. Lett., 2009, 94: 021907
64 Zhang Y, Wang W H, Greer A L. Making metallic glasses plastic by control of residual stress [J]. Nat. Mater., 2006, 5: 857
65 Concustell A, Méar F O, Suriñach S, et al. Structural relaxation and rejuvenation in a metallic glass induced by shot-peening [J]. Philos. Mag. Lett., 2009, 89: 831
66 González S, Fornell J, Pellicer E, et al. Influence of the shot-peening intensity on the structure and near-surface mechanical properties of Ti40Zr10Cu38Pd12 bulk metallic glass [J]. Appl. Phys. Lett., 2013, 103: 211907
67 Lee M H, Lee K S, Das J, et al. Improved plasticity of bulk metallic glasses upon cold rolling [J]. Scr. Mater., 2010, 62: 678
68 Haruyama O, Kisara K, Yamashita A, et al. Characterization of free volume in cold-rolled Zr55Cu30Ni5Al10 bulk metallic glasses [J]. Acta Mater., 2013, 61: 3224
69 Xu Y L, Shi B, Ma Z K, et al. Evolution of shear bands, free volume, and structure in room temperature rolled Pd40Ni40P20 bulk metallic glass [J]. Mater. Sci. Eng., 2015, A623: 145
70 Ketov S V, Sun Y H, Nachum S, et al. Rejuvenation of metallic glasses by non-affine thermal strain [J]. Nature, 2015, 524: 200
71 Xiao H B, Wang X D, Zhang P, et al. Contribution of cryogenic thermal cycling to the atomic dynamics in a La-based bulk metallic glass with different initial states [J]. J. Appl. Phys., 2020, 127: 205104
72 Dmowski W, Yokoyama Y, Chuang A, et al. Structural rejuvenation in a bulk metallic glass induced by severe plastic deformation [J]. Acta Mater., 2010, 58: 429
73 Meng F Q, Tsuchiya K, Seiichiro II, et al. Reversible transition of deformation mode by structural rejuvenation and relaxation in bulk metallic glass [J]. Appl. Phys. Lett., 2012, 101: 121914
74 Zhou H B, Hubek R, Peterlechner M, et al. Two-stage rejuvenation and the correlation between rejuvenation behavior and the boson heat capacity peak of a bulk metallic glass [J]. Acta Mater., 2019, 179: 308
75 Tong Y, Dmowski W, Yokoyama Y, et al. Recovering compressive plasticity of bulk metallic glasses by high-temperature creep [J]. Scr. Mater., 2013, 69: 570
76 Tong Y, Dmowski W, Bei H, et al. Mechanical rejuvenation in bulk metallic glass induced by thermo-mechanical creep [J]. Acta Mater., 2018, 148: 384
77 Pan J, Wang Y X, Guo Q, et al. Extreme rejuvenation and softening in a bulk metallic glass [J]. Nat. Commun., 2018, 9: 560
78 Pan J, Ivanov Y P, Zhou W H, et al. Strain-hardening and suppression of shear-banding in rejuvenated bulk metallic glass [J]. Nature, 2020, 578: 559
79 Turnbull D. Kinetics of solidification of supercooled liquid mercury droplets [J]. J. Chem. Phys., 1952, 20: 411
80 Turnbull D, Cohen M H. Free-volume model of the amorphous phase: Glass transition [J]. J. Chem. Phys., 1961, 34: 120
81 Debenedetti P G, Stillinger F H. Supercooled liquids and the glass transition [J]. Nature, 2001, 410: 259
82 Kauzmann W. The nature of the glassy state and the behavior of liquids at low temperatures [J]. Chem. Rev., 1948, 43: 219
83 Harmon J S, Demetriou M D, Johnson W L, et al. Deformation of glass forming metallic liquids: Configurational changes and their relation to elastic softening [J]. Appl. Phys. Lett., 2007, 90: 131912
84 Tong Y, Iwashita T, Dmowski W, et al. Structural rejuvenation in bulk metallic glasses [J]. Acta Mater., 2015, 86: 240
85 Sun Y H, Concustell A, Greer A L. Thermomechanical processing of metallic glasses: Extending the range of the glassy state [J]. Nat. Rev. Mater., 2016, 1: 16039
86 Bouchaud J P, Dupuis V, Hammann J, et al. Separation of time and length scales in spin glasses: Temperature as a microscope [J]. Phys. Rev., 2001, 65B: 024439
87 Wolynes P G. Spatiotemporal structures in aging and rejuvenating glasses [J]. Proc. Natl. Acad. Sci. USA, 2009, 106: 1353
88 Méar F O, Lenk B, Zhang Y, et al. Structural relaxation in a heavily cold-worked metallic glass [J]. Scr. Mater., 2008, 59: 1243
89 Battezzati L, Riontino G, Baricco M, et al. A DSC study of structural relaxation in metallic glasses prepared with different quenching rates [J]. J. Non-Cryst. Solids, 1984, 61-62: 877
90 Lee J C. Calorimetric study of β-relaxation in an amorphous alloy: An experimental technique for measuring the activation energy for shear transformation [J]. Intermetallics, 2014, 44: 116
91 Park K W, Lee C M, Wakeda M, et al. Homogeneous deformation of bulk amorphous alloys during elastostatic compression and its packing density dependence [J]. Scr. Mater., 2008, 59: 710
92 Louzguine-Luzgin D V, Zadorozhnyy V Y, Ketov S V, et al. On room-temperature quasi-elastic mechanical behaviour of bulk metallic glasses [J]. Acta Mater., 2017, 129: 343
93 Cao Q P, Li J F, Zhou Y H, et al. Free-volume evolution and its temperature dependence during rolling of Cu60Zr20Ti20 bulk metallic glass [J]. Appl. Phys. Lett., 2005, 87: 101901
94 Cao Q P, Li J F, Zhou Y H, et al. Mechanically driven phase separation and corresponding microhardness change in Cu60Zr20Ti20 bulk metallic glass [J]. Appl. Phys. Lett., 2005, 86: 081913
95 Ebner C, Escher B, Gammer C, et al. Structural and mechanical characterization of heterogeneities in a CuZr-based bulk metallic glass processed by high pressure torsion [J]. Acta Mater., 2018, 160: 147
96 Flores K M, Dauskardt R H. Mean stress effects on flow localization and failure in a bulk metallic glass [J]. Acta Mater., 2001, 49: 2527
97 Qu R T, Calin M, Eckert J, et al. Metallic glasses: Notch-insensitive materials [J]. Scr. Mater., 2012, 66: 733
98 Li W D, Bei H B, Gao Y F. Effects of geometric factors and shear band patterns on notch sensitivity in bulk metallic glasses [J]. Intermetallics, 2016, 79: 12
99 Ding G, Li C, Zaccone A, et al. Ultrafast extreme rejuvenation of metallic glasses by shock compression [J]. Sci. Adv., 2019, 5: eaaw6249
100 Saida J, Yamada R, Wakeda M, et al. Thermal rejuvenation in metallic glasses [J]. Sci. Technol. Adv. Mater., 2017, 18: 152
101 Wakeda M, Saida J, Li J, et al. Controlled rejuvenation of amorphous metals with thermal processing [J]. Sci. Rep., 2015, 5: 10545
102 Kovacs A J. Transition vitreuse dans les polymères amorphes. Etude phénoménologique [J]. Adv. Polym. Sci., 1963, 3: 394
103 Das A, Dufresne E M, Maaß R. Structural dynamics and rejuvenation during cryogenic cycling in a Zr-based metallic glass [J]. Acta Mater., 2020, 196: 723
104 Wang C, Yang Z Z, Ma T, et al. High stored energy of metallic glasses induced by high pressure [J]. Appl. Phys. Lett., 2017, 110: 111901
105 Miyazaki N, Wakeda M, Wang Y J, et al. Prediction of pressure-promoted thermal rejuvenation in metallic glasses [J]. npj Comput. Mater., 2016, 2: 16013
106 Yokoyama Y, Yamasaki T, Liaw P K, et al. Study of the structural relaxation-induced embrittlement of hypoeutectic Zr-Cu-Al ternary bulk glassy alloys [J]. Acta Mater., 2008, 56: 6097
107 Wu T W, Spaepen F. The relation between enbrittlement and structural relaxation of an amorphous metal [J]. Philos. Mag., 1990, 61B: 739
108 Jin H J, Gu X J, Wen P, et al. Pressure effect on the structural relaxation and glass transition in metallic glasses [J]. Acta Mater., 2003, 51: 6219
109 Lee S J, Yoo B G, Jang J I, et al. Irreversible structural change induced by elastostatic stress imposed on an amorphous alloy and its influence on the mechanical properties [J]. Met. Mater. Int., 2008, 14: 9
110 Zhang M, Wang Y M, Li F X, et al. Mechanical relaxation-to-rejuvenation transition in a Zr-based bulk metallic glass [J]. Sci. Rep., 2017, 7: 625
111 Spaepen F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses [J]. Acta Metall. Mater., 1977, 25: 407
112 Argon A S. Plastic deformation in metallic glasses [J]. Acta Metall., 1979, 27: 47
113 Langer J S. Dynamics of shear-transformation zones in amorphous plasticity: Formulation in terms of an effective disorder temperature [J]. Phys. Rev., 2004, 70E: 041502
114 Jiang M Q, Jiang S Y, Ling Z, et al. Smaller Deborah number inducing more serrated plastic flow of metallic glass [J]. Comp. Mater. Sci., 2009, 46: 767
115 Gao Y F. An implicit finite element method for simulating inhomogeneous deformation and shear bands of amorphous alloys based on the free-volume model [J]. Modell. Simul. Mater. Sci. Eng., 2006, 14: 1329
116 Jiang M Q, Wilde G, Dai L H. Shear band dilatation in amorphous alloys [J]. Scr. Mater., 2017, 127: 54
117 Sun X, Ding G, Mo G, et al. Dilatancy signatures of amorphous plasticity probed by X-ray synchrotron radiation [J]. Intermetallics, 2019, 107: 34
118 Lu Y Z, Jiang M Q, Lu X, et al. Dilatancy of shear transformations in a colloidal glass [J]. Phys. Rev. Appl., 2018, 9: 014023
119 Scalliet C, Berthier L. Rejuvenation and memory effects in a structural glass [J]. Phys. Rev. Lett., 2019, 122: 255502
120 Lunkenheimer P, Schneider U, Brand R, et al. Glassy dynamics [J]. Contemp. Phys., 2000, 41: 15
121 Küchemann S, Maaß R. Gamma relaxation in bulk metallic glasses [J]. Scr. Mater., 2017, 137: 5
122 Song L J, Xu W, Huo J T, et al. Activation entropy as a key factor controlling the memory effect in glasses [J]. Phys. Rev. Lett., 2020, 125: 135501
123 Luo P, Li Y Z, Bai H Y, et al. Memory effect manifested by a boson peak in metallic glass [J]. Phys. Rev. Lett., 2016, 116: 175901
124 Lee S C, Lee C M, Yang J W, et al. Microstructural evolution of an elastostatically compressed amorphous alloy and its influence on the mechanical properties [J]. Scr. Mater., 2008, 58: 591
125 Guo W, Yamada R, Saida J. Rejuvenation and plasticization of metallic glass by deep cryogenic cycling treatment [J]. Intermetallics, 2018, 93: 141
126 Ke H B, Wen P, Peng H L, et al. Homogeneous deformation of metallic glass at room temperature reveals large dilatation [J]. Scr. Mater., 2011, 64: 966
127 Gelin S, Tanaka H, Lemaître A. Anomalous phonon scattering and elastic correlations in amorphous solids [J]. Nat. Mater., 2016, 15: 1177
128 Schirmacher W, Ruocco G, Scopigno T. Acoustic attenuation in glasses and its relation with the boson peak [J]. Phys. Rev. Lett., 2007, 98: 025501
129 Shintani H, Tanaka H. Universal link between the boson peak and transverse phonons in glass [J]. Nat. Mater., 2008, 7: 870
130 Luo P, Wen P, Bai H Y, et al. Relaxation decoupling in metallic glasses at low temperatures [J]. Phys. Rev. Lett., 2017, 118: 225901
131 Qiao J C, Wang Y J, Zhao L Z, et al. Transition from stress-driven to thermally activated stress relaxation in metallic glasses [J]. Phys. Rev., 2016, 94B: 104203
132 Yuan C C, Lv Z W, Pang C M, et al. Ultrasonic-assisted plastic flow in a Zr-based metallic glass [J]. Sci. China Mater., 2020, 64: 448
133 Huang B, Ge T P, Liu G L, et al. Density fluctuations with fractal order in metallic glasses detected by synchrotron X-ray nano-computed tomography [J]. Acta Mater., 2018, 155: 69
134 Ross P, Küchemann S, Derlet P M, et al. Linking macroscopic rejuvenation to nano-elastic fluctuations in a metallic glass [J]. Acta Mater., 2017, 138: 111
135 Suzuki Y, Haimovich J, Egami T. Bond-orientational anisotropy in metallic glasses observed by X-ray diffraction [J]. Phys. Rev., 1987, 35B: 2162
[1] 王凯, 晋玺, 焦志明, 乔珺威. CrFeNi中熵合金在宽温域拉伸条件下的力学行为与变形本构方程[J]. 金属学报, 2023, 59(2): 277-288.
[2] 罗旋, 韩芳, 黄天林, 吴桂林, 黄晓旭. 层状异构Mg-3Gd合金的微观组织和力学性能[J]. 金属学报, 2022, 58(11): 1489-1496.
[3] 陈伟, 章环, 牟娟, 朱正旺, 张海峰, 王沿东. 显微组织和应变速率对TC4合金动态力学性能和绝热剪切带的影响[J]. 金属学报, 2022, 58(10): 1271-1280.
[4] 孙小钧, 何杰, 陈斌, 赵九洲, 江鸿翔, 张丽丽, 郝红日. Fe含量对Zr60Cu40-xFex相分离非晶合金组织结构、电阻性能和纳米压痕行为的影响[J]. 金属学报, 2021, 57(5): 675-683.
[5] 曹庆平, 吕林波, 王晓东, 蒋建中. 物理气相沉积制备金属玻璃薄膜及其力学性能的样品尺寸效应[J]. 金属学报, 2021, 57(4): 473-490.
[6] 张倪侦, 马昕迪, 耿川, 穆永坤, 孙康, 贾延东, 黄波, 王刚. Ag元素添加对Cu-Zr-Al基金属玻璃纳米压痕行为的影响[J]. 金属学报, 2021, 57(4): 567-574.
[7] 杨群, 彭思旭, 卜庆周, 于海滨. 非晶态Ni80P20合金的玻璃转变和过冷液体性质[J]. 金属学报, 2021, 57(4): 553-558.
[8] 屈瑞涛, 王晓地, 吴少杰, 张哲峰. 金属玻璃的剪切带变形与断裂机制研究进展[J]. 金属学报, 2021, 57(4): 453-472.
[9] 管鹏飞, 孙胜君. 金属玻璃结构及其失稳的原子层次研究[J]. 金属学报, 2021, 57(4): 501-514.
[10] 曾桥石, 尹梓梁, 楼鸿波. 金属玻璃中的非晶多形态转变[J]. 金属学报, 2021, 57(4): 491-500.
[11] 黄火根, 张鹏国, 张培, 王勤国. U-CoU-Fe基础体系非晶形成能力的比较[J]. 金属学报, 2020, 56(6): 849-854.
[12] 祝佳林,刘施峰,曹宇,柳亚辉,邓超,刘庆. 交叉轧制周期对高纯Ta板变形及再结晶梯度的影响[J]. 金属学报, 2019, 55(8): 1019-1033.
[13] 涂爱东, 滕春禹, 王皞, 徐东生, 傅耘, 任占勇, 杨锐. Ti-Al合金γ/α2界面结构及拉伸变形行为的分子动力学模拟[J]. 金属学报, 2019, 55(2): 291-298.
[14] 张海峰, 闫海乐, 贾楠, 金剑锋, 赵骧. Cu/Ti纳米层状复合体塑性变形机制的分子动力学模拟研究[J]. 金属学报, 2018, 54(9): 1333-1342.
[15] 赵燕春, 孙浩, 李春玲, 蒋建龙, 毛瑞鹏, 寇生中, 李春燕. 高强韧Ti-Ni基块体金属玻璃复合材料高温变形行为[J]. 金属学报, 2018, 54(12): 1818-1824.