|
|
金属玻璃结构及其失稳的原子层次研究 |
管鹏飞( ), 孙胜君 |
中国工程物理研究院 北京计算科学研究中心 北京 100193 |
|
Atomic-Level Study in the Structure and Its Instability of Metallic Glasses |
GUAN Pengfei( ), SUN Shengjun |
Beijing Computational Science Research Center, China Academy of Engineering Physics, Beijing 100193, China |
引用本文:
管鹏飞, 孙胜君. 金属玻璃结构及其失稳的原子层次研究[J]. 金属学报, 2021, 57(4): 501-514.
Pengfei GUAN,
Shengjun SUN.
Atomic-Level Study in the Structure and Its Instability of Metallic Glasses[J]. Acta Metall Sin, 2021, 57(4): 501-514.
1 |
Klement W, Willens R H, Duwez P. Non-crystalline structure in solidified gold-silicon alloys [J]. Nature, 1960, 187: 869
|
2 |
Bernal J D. A geometrical approach to the structure of liquids [J]. Nature, 1959, 183: 141
|
3 |
Bernal J D. The bakerian lecture, 1962. The structure of liquids [J]. Proc. R. Soc. London, 1964, 280A: 299
|
4 |
Bernal J D, Mason J. Packing of spheres: Co-ordination of randomly packed spheres [J]. Nature, 1960, 188: 910
|
5 |
Miracle D B. A structural model for metallic glasses [J]. Nat. Mater., 2004, 3: 697
|
6 |
Miracle D B, Sanders W S, Senkov O N. The influence of efficient atomic packing on the constitution of metallic glasses [J]. Philos. Mag., 2003, 83: 2409
|
7 |
Sheng H W, Luo W K, Alamgir F M, et al. Atomic packing and short-to-medium-range order in metallic glasses [J]. Nature, 2006, 439: 419
|
8 |
Finney J L. Random packings and the structure of simple liquids I. The geometry of random close packing [J]. Proc. Roy. Soc. London, 1970, 319A, 479
|
9 |
Cheng Y Q, Cao A J, Ma E. Correlation between the elastic modulus and the intrinsic plastic behavior of metallic glasses: The roles of atomic configuration and alloy composition [J]. Acta Mater., 2009, 57: 3253
|
10 |
Cheng Y Q, Ma E. Atomic-level structure and structure-property relationship in metallic glasses [J]. Prog. Mater. Sci., 2011, 56: 379
|
11 |
Hirata A, Guan P F, Fujita T, et al. Direct observation of local atomic order in a metallic glass [J]. Nat. Mater., 2011, 10: 28
|
12 |
Treacy M M J, Borisenko K B. The local structure of amorphous silicon [J]. Science, 2012, 335: 950
|
13 |
Ma E, Zhang Z. Reflections from the glass maze [J]. Nat. Mater., 2011, 10: 10
|
14 |
Hirata A, Kang L J, Fujita T, et al. Geometric frustration of icosahedron in metallic glasses [J]. Science, 2013, 341: 376
|
15 |
Hirata A, Ichitsubo T, Guan P F, et al. Distortion of local atomic structures in amorphous Ge-Sb-Te phase change materials [J]. Phys. Rev. Lett., 2018, 120: 205502
|
16 |
Matsubara E, Okada S, Ichitsubo T, et al. Initial atomic motion immediately following femtosecond-laser excitation in phase-change materials [J]. Phys. Rev. Lett., 2016, 117: 135501
|
17 |
Ma E. Tuning order in disorder [J]. Nat. Mater., 2015, 14: 547
|
18 |
Ma D, Stoica A D, Wang X L. Power-law scaling and fractal nature of medium-range order in metallic glasses [J]. Nat. Mater., 2009, 8: 30
|
19 |
Wu Z W, Wang W H. Linking local connectivity to atomic-scale relaxation dynamics in metallic glass-forming systems [J]. Acta Phys. Sin., 2020, 69: 066101
|
19 |
武振伟, 汪卫华. 非晶态物质原子局域连接度与弛豫动力学 [J]. 物理学报, 2020, 69: 066101
|
20 |
Wu Z W, Li M Z, Wang W H, et al. Hidden topological order and its correlation with glass-forming ability in metallic glasses [J]. Nat. Commun., 2015, 6: 6035
|
21 |
Wu Z W, Kob W, Wang W H, et al. Stretched and compressed exponentials in the relaxation dynamics of a metallic glass-forming melt [J]. Nat. Commun., 2018, 9: 5334
|
22 |
Wu Z W, Li M Z, Wang W H, et al. Correlation between structural relaxation and connectivity of icosahedral clusters in CuZr metallic glass-forming liquids [J]. Phys. Rev., 2013, 88B: 054202
|
23 |
Hiraoka Y, Nakamura T, Hirata A, et al. Hierarchical structures of amorphous solids characterized by persistent homology [J]. Proc. Natl. Acad. Sci. USA, 2016, 113: 7035
|
24 |
Sørensen S S, Biscio C A N, Bauchy M, et al. Revealing hidden medium-range order in amorphous materials using topological data analysis [J]. Sci. Adv., 2020, 6: eabc2320
|
25 |
Chen M W. A brief overview of bulk metallic glasses [J]. NPG Asia Mater., 2011, 3: 82
|
26 |
Laws K J, Miracle D B, Ferry M. A predictive structural model for bulk metallic glasses [J]. Nat. Commun., 2015, 6: 8123
|
27 |
Cheng Y Q, Ma E, Sheng H W. Atomic level structure in multicomponent bulk metallic glass [J]. Phys. Rev. Lett., 2009, 102: 245501
|
28 |
Ediger M D, Harrowell P. Perspective: Supercooled liquids and glasses [J]. J. Chem. Phys., 2012, 137: 080901
|
29 |
Gaskell P H. A new structural model for transition metal-metalloid glasses [J]. Nature, 1978, 276: 484
|
30 |
Guan P F, Fujita T, Hirata A, et al. Structural origins of the excellent glass forming ability of Pd40Ni40P20 [J]. Phys. Rev. Lett., 2012, 108: 175501
|
31 |
Hu Y C, Wang Y Z, Su R, et al. A highly efficient and self-stabilizing metallic-glass catalyst for electrochemical hydrogen generation [J]. Adv. Mater., 2016, 28: 10293
|
32 |
Fujita T, Konno K, Zhang W, et al. Atomic-scale heterogeneity of a multicomponent bulk metallic glass with excellent glass forming ability [J]. Phys. Rev. Lett., 2009, 103: 075502
|
33 |
Yuan C C, Yang F, Xi X K, et al. Impact of hybridization on metallic-glass formation and design [J]. Mater. Today, 2020, 32: 26
|
34 |
Ichitsubo T, Matsubara E, Yamamoto T, et al. Microstructure of fragile metallic glasses inferred from ultrasound-accelerated crystallization in Pd-based metallic glasses [J]. Phys. Rev. Lett., 2005, 95: 245501
|
35 |
Liu Y H, Wang D, Nakajima K, et al. Characterization of nanoscale mechanical heterogeneity in a metallic glass by dynamic force microscopy [J]. Phys. Rev. Lett., 2011, 106: 125504
|
36 |
Sun X, Mo G, Zhao L Z, et al. Characterization of nanoscale structural heterogeneity in an amorphous alloy by synchrotron small angle X-ray scattering [J]. Acta Phys. Sin., 2017, 66: 176109
|
36 |
孙 星, 默 广, 赵林志等. 小角X射线散射表征非晶合金纳米尺度结构非均匀 [J]. 物理学报, 2017, 66: 176109
|
37 |
Widmer-Cooper A, Perry H, Harrowell P, et al. Irreversible reorganization in a supercooled liquid originates from localized soft modes [J]. Nat. Phys., 2008, 4: 711
|
38 |
Mizuno H, Shiba H, Ikeda A. Continuum limit of the vibrational properties of amorphous solids [J]. Proc. Natl. Acad. Sci. USA, 2017, 114: E9767
|
39 |
Shimada M, Mizuno H, Ikeda A. Anomalous vibrational properties in the continuum limit of glasses [J]. Phys. Rev., 2018, 97E: 022609
|
40 |
Ding J, Patinet S, Falk M L, et al. Soft spots and their structural signature in a metallic glass [J]. Proc. Natl. Acad. Sci. USA, 2014, 111: 14052
|
41 |
Wang L J, Ninarello A, Guan P F, et al. Low-frequency vibrational modes of stable glasses [J]. Nat. Commun., 2019, 10: 26
|
42 |
Rainone C, Bouchbinder E, Lerner E. Pinching a glass reveals key properties of its soft spots [J]. Proc. Natl. Acad. Sci. USA, 2020, 117: 5228
|
43 |
Wang L J, Berthier L, Flenner E, et al. Sound attenuation in stable glasses [J]. Soft Matter, 2019, 15: 7018
|
44 |
Wang B, Wang L J, Shang B S, et al. Revealing the ultra-low-temperature relaxation peak in a model metallic glass [J]. Acta Mater., 2020, 195: 611
|
45 |
Huo L S, Zeng J F, Wang W H, et al. The dependence of shear modulus on dynamic relaxation and evolution of local structural heterogeneity in a metallic glass [J]. Acta Mater., 2013, 61: 4329
|
46 |
Knuyt G, de Schepper L, Stals L M. Calculation of some metallic glass properties, based on the use of a gaussian distribution for the nearest-neighbour distance [J]. Philos. Mag., 1990, 61B: 965
|
47 |
Lu Z, Jiao W, Wang W H, et al. Flow unit perspective on room temperature homogeneous plastic deformation in metallic glasses [J]. Phys. Rev. Lett., 2014, 113: 045501
|
48 |
Hu Y C, Li F X, Li M Z, et al. Five-fold symmetry as indicator of dynamic arrest in metallic glass-forming liquids [J]. Nat. Commun., 2015, 6: 8310
|
49 |
Peng H L, Li M Z, Wang W H. Structural signature of plastic deformation in metallic glasses [J]. Phys. Rev. Lett., 2011, 106: 135503
|
50 |
Zhao L Z, Wang W H, Bai H Y. Modulation of β-relaxation by modifying structural configurations in metallic glasses [J]. J. Non-Cryst. Solids, 2014, 405: 207
|
51 |
Wang J Q, Shen Y, Perepezko J H, et al. Increasing the kinetic stability of bulk metallic glasses [J]. Acta Mater., 2016, 104: 25
|
52 |
Sheng H W, Liu H Z, Cheng Y Q, et al. Polyamorphism in a metallic glass [J]. Nat. Mater., 2007, 6: 192
|
53 |
Lou H B, Zeng Z D, Zhang F, et al. Two-way tuning of structural order in metallic glasses [J]. Nat. Commun., 2020, 11: 314
|
54 |
Wang B, Shang B S, Gao X Q, et al. Understanding atomic-scale features of low temperature-relaxation dynamics in metallic glasses [J]. J. Phys. Chem. Lett., 2016, 7: 4945
|
55 |
Hu Y C, Li Y W, Yang Y, et al. Configuration correlation governs slow dynamics of supercooled metallic liquids [J]. Proc. Natl. Acad. Sci. USA, 2018, 115: 6375
|
56 |
Tong H, Tanaka H. Revealing hidden structural order controlling both fast and slow glassy dynamics in supercooled liquids [J]. Phys. Rev., 2018, 8X: 011041
|
57 |
Wei D, Yang J, Jiang M Q, et al. Revisiting the structure-property relationship of metallic glasses: Common spatial correlation revealed as a hidden rule [J]. Phys. Rev., 2019, 99B: 014115
|
58 |
Wang Z, Wang W H. Flow units as dynamic defects in metallic glassy materials [J]. Nat. Sci. Rev., 2019, 6: 304
|
59 |
Shang B S, Guan P F, Barrat J L. Elastic avalanches reveal marginal behavior in amorphous solids [J]. Proc. Natl. Acad. Sci. USA, 2020, 117: 86
|
60 |
Wang B, Wang L J, Wang W H, et al. Understanding the maximum dynamical heterogeneity during the unfreezing process in metallic glasses [J]. J. Appl. Phys., 2017, 121: 175106
|
61 |
Wu Y C, Wang B, Hu Y C, et al. The critical strain—A crossover from stochastic activation to percolation of flow units during stress relaxation in metallic glass [J]. Scr. Mater., 2017, 134: 75
|
62 |
Guan P F, Wang B, Wu Y C, et al. Heterogeneity: The soul of metallic glasses [J]. Acta Phys. Sin., 2017, 66: 176112
|
62 |
管鹏飞, 王 兵, 吴义成等. 不均匀性: 非晶合金的灵魂 [J]. 物理学报, 2017, 66: 176112
|
63 |
Hu Y C, Guan P F, Li M Z, et al. Unveiling atomic-scale features of inherent heterogeneity in metallic glass by molecular dynamics simulations [J]. Phys. Rev., 2016, 93B: 214202
|
64 |
Wang B, Zhou Z Y, Guan P F, et al. Invariance of the relation between α relaxation and β relaxation in metallic glasses to variations of pressure and temperature [J]. Phys. Rev., 2020, 102B: 094205
|
65 |
Ren N N, Hu L, Wang L J, et al. Revealing a hidden dynamic signature of the non-arrhenius crossover in metallic glass-forming liquids [J]. Scr. Mater., 2020, 181: 43
|
66 |
Wang L J, Xu N, Wang W H, et al. Revealing the link between structural relaxation and dynamic heterogeneity in glass-forming liquids [J]. Phys. Rev. Lett., 2018, 120: 125502
|
67 |
Mizuno H, Mossa S, Barrat J L. Measuring spatial distribution of the local elastic modulus in glasses [J]. Phys. Rev., 2013, 87E: 042306
|
68 |
Shang B S, Rottler J, Guan P F, et al. Local versus global stretched mechanical response in a supercooled liquid near the glass transition [J]. Phys. Rev. Lett., 2019, 122: 105501
|
69 |
Guan P F, Chen M W, Egami T. Stress-temperature scaling for steady-state flow in metallic glasses [J]. Phys. Rev. Lett., 2010, 104: 205701
|
70 |
Klaumünzer D, Lazarev A, Maaß R, et al. Probing shear-band initiation in metallic glasses [J]. Phys. Rev. Lett., 2011, 107: 185502
|
71 |
Guan P F, Lu S, Spector M J B, et al. Cavitation in amorphous solids [J]. Phys. Rev. Lett., 2013, 110: 185502
|
72 |
Ma J, Yang C, Liu X D, et al. Fast surface dynamics enabled cold joining of metallic glasses [J]. Sci. Adv., 2019, 5: eaax7256
|
73 |
Li H Z, Li Z, Yang J, et al. Interface design enabled manufacture of giant metallic glasses [J]. Sci. China Mater., 2021, 64: 964
|
74 |
Topological phase transitions and topological phases of matter [EB/OL]. (2016-10-04).
|
75 |
Liu X D, Li X, He Q F, et al. Machine learning-based glass formation prediction in multicomponent alloys [J]. Acta Mater., 2020, 201: 182
|
76 |
Lu Z C, Chen X, Liu X J, et al. Interpretable machine-learning strategy for soft-magnetic property and thermal stability in Fe-based metallic glasses [J]. npj Comput. Mater., 2020, 6: 187
|
77 |
Fan Z, Ding J, Ma E. Machine learning bridges local static structure with multiple properties in metallic glasses [J]. Mater. Today, 2020, 40: 48
|
78 |
An S M, Su R, Zhao S, et al. Ultrasmall nanoparticles inducing order-to-disorder transition [J]. Phys. Rev., 2018, 98B: 134101
|
79 |
Sun S J, Guan P F. The critical model size for simulating the structure-dynamics correlation in bulk metallic glasses [J]. Sci. China Mater., 2021. DOI: 10.1007/s40843-020-1537-y
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|