Please wait a minute...
金属学报  2021, Vol. 57 Issue (4): 501-514    DOI: 10.11900/0412.1961.2020.00514
  综述 本期目录 | 过刊浏览 |
金属玻璃结构及其失稳的原子层次研究
管鹏飞(), 孙胜君
中国工程物理研究院 北京计算科学研究中心 北京 100193
Atomic-Level Study in the Structure and Its Instability of Metallic Glasses
GUAN Pengfei(), SUN Shengjun
Beijing Computational Science Research Center, China Academy of Engineering Physics, Beijing 100193, China
引用本文:

管鹏飞, 孙胜君. 金属玻璃结构及其失稳的原子层次研究[J]. 金属学报, 2021, 57(4): 501-514.
Pengfei GUAN, Shengjun SUN. Atomic-Level Study in the Structure and Its Instability of Metallic Glasses[J]. Acta Metall Sin, 2021, 57(4): 501-514.

全文: PDF(12416 KB)   HTML
摘要: 

金属玻璃无序结构的非均匀性特征给实验研究其原子尺度的结构特性带来了巨大挑战,目前的实验研究手段仍然受限于时空分辨率的不足,很难捕捉到金属玻璃微观结构的局域响应,而计算模拟能够从原子层次上理解非晶结构及其响应规律。但由于元素间相互作用、计算方法和计算能力的限制,用于计算模拟研究的模型体系和真实的金属玻璃材料之间还存在着难以逾越的鸿沟。充分利用和综合现代计算机技术、软件和算法的成果,探索和发展更有效的计算模拟体系应用于金属玻璃计算模拟研究是解决这一困境的可能途径。本文主要综述了近年来我们关于金属玻璃结构与失稳计算模拟研究的重要进展,及其对认识和调控材料性能、优化材料制备方面的影响,并对未来金属玻璃计算模拟研究进行了简要的展望。

关键词 金属玻璃原子结构玻璃转变剪切变形计算模拟    
Abstract

Owing to limitations in the spatial and temporal resolution of the current experimental research technologies, the heterogeneity of a disordered structure poses a great challenge to the experimental study of atomic-level behaviors of amorphous alloys. Computational simulation can be a powerful tool in the understanding of such amorphous structures and their response at the atomic level. However, owing to the limitations of multielement interactions, computational approaches, and computational capability, there is still an insurmountable gap between the model systems used in computational simulation and real amorphous alloy materials. Combining the power of the modern computing technology, software, and algorithms, the exploration and development of hihgly effective computational approaches that can be applied to the simulation of amorphous alloys is a potential way to address this long-term challenge. This article reviews recent progress in the computational study of atomic structure and structural instability in metallic glasses, the role that such computational approaches can play in the understanding and the modification of material properties, and in the optimization of material preparation. A brief perspective on the research areas of the computational simulation of metallic glasses is also proposed.

Key wordsmetallic glass    atomic structure    glass transition    shear deformation    computational simulation
收稿日期: 2020-12-22     
ZTFLH:  TG139  
基金资助:国家自然科学基金联合基金项目(U1930402);中国工程物理研究院核科学挑战计划项目(TZ2018004)
图1  PdNiP 金属玻璃体系中基于Ni原子中心、P原子中心原子团簇的杂化堆垛与局域畸变[30]
图2  基于“软度”定义的高热稳定和低热稳定度的非晶构型中“本征缺陷”的空间分布:非晶稳定性较高和非晶稳定性较低的构型快照,粒子半径表示用最低准局域模计算得到的振幅大小;及非晶稳定性不同的样品的振幅概率分布曲线,稳定性较高的体系中粒子大部分振幅较小,振动模式表现得更加局域化[41](a, b) snapshots obtained for glassy samples with high stability (a) and poor stability (b). The particles are shown with their radius given by the “atomic softness” A(i) calculated from the lowest quasi-localized modes(c) the probability distribution of A(i) (P(Ai)) for glassy samples with high stability (a) and poor stability (b). For sample with high stability (a), there is a smaller fraction of the particles with larger A(i), and thus the modes are more localized (Tp—parent temperature)
图3  因制备条件(冷却速率和压力)不同导致的模拟金属玻璃结构与动态响应不均匀性差异。左图为压强和冷却速率不同的样品的约化损耗模量随约化温度(T?/?Tα)的演化曲线[54],右图表示相同样品约化损耗模量随体系平均五次对称性变化的情况
图4  受限条件下金属玻璃过冷液体的短程序与结构弛豫出现退耦合关联:受限的金属玻璃模型,原子构型中二十面体比重及结构弛豫特征随温度和受限度的变化规律,与受限度密切相关的结构短程序-弛豫特性之间的关联[55](a) schematic configuration of the sandwich-pinning geometry(b) the fraction of full icosahedra <0,0,12,0> as a function of z at different temperatures (z—the distance of an atom from the closer wall)(c) temperature dependence of τα,?z for Cu50Zr50 confined between two rough walls, the structural relaxation time τα of the bulk is also included in dashed rectangular for comparison. The sharp contrast with Fig.4b demonstrates the decoupling between slow dynamics and full icosahedra (τα,?z—z-dependent relaxation time)(d) the contour map of the relaxation times in confinement τα,?z as a 2D function of fico and z. It is obvious that τα,?z can change remarkably when fico is invariant
图5  金属玻璃局域塑性事件的空间分布及相应的流变单元原子/原子团簇的微观特征
图6  不同制备条件下获得的Cu50Zr50金属玻璃样品能量损耗特征与微观动力学属性之间的普适关系,即未约化与约化后损耗模量与非Gaussian参量之间的关系[64](a) the data of α2vsE″ (b) the normalized α2vs normalized E″
图7  非晶形成液体结构弛豫行为与非Gaussian参量之间存在的普适关系:不同过冷液体模型体系,及金属玻璃形成液体[65,66](a) α2,?maxvs reduced structural relaxation time τ?/?τ*, here τ* is the characteristic time scale under the iso-α2,?max condition (α2,?max ≈ 1.67 here)(b) α2,?maxvs reduced structural relaxation time τα?/?τ*, here τ* is defined from α2, max(τα) ≈ 0.8
图8  局域耗散动力学特征随时间、温度场[60]和应力场[61]下的演化的规律,发现玻璃转变和剪切流变都是通过局域耗散的激活、连通和逾渗来实现
图9  基于温度-应力空间的宏观动力学相图,由黏度定义了金属玻璃的玻璃态和流变态[69]
图10  金属玻璃断裂方式差异(孔穴或流变主导)的根源是流变单元激活与孔穴形核在不同应变条件下的相互竞争[71]
图11  “应力诱导玻璃转变”、动力学非均匀响应与金属玻璃的低温粘接制造[72]
图12  金属玻璃结构模型的发展历程及基本特征
1 Klement W, Willens R H, Duwez P. Non-crystalline structure in solidified gold-silicon alloys [J]. Nature, 1960, 187: 869
2 Bernal J D. A geometrical approach to the structure of liquids [J]. Nature, 1959, 183: 141
3 Bernal J D. The bakerian lecture, 1962. The structure of liquids [J]. Proc. R. Soc. London, 1964, 280A: 299
4 Bernal J D, Mason J. Packing of spheres: Co-ordination of randomly packed spheres [J]. Nature, 1960, 188: 910
5 Miracle D B. A structural model for metallic glasses [J]. Nat. Mater., 2004, 3: 697
6 Miracle D B, Sanders W S, Senkov O N. The influence of efficient atomic packing on the constitution of metallic glasses [J]. Philos. Mag., 2003, 83: 2409
7 Sheng H W, Luo W K, Alamgir F M, et al. Atomic packing and short-to-medium-range order in metallic glasses [J]. Nature, 2006, 439: 419
8 Finney J L. Random packings and the structure of simple liquids I. The geometry of random close packing [J]. Proc. Roy. Soc. London, 1970, 319A, 479
9 Cheng Y Q, Cao A J, Ma E. Correlation between the elastic modulus and the intrinsic plastic behavior of metallic glasses: The roles of atomic configuration and alloy composition [J]. Acta Mater., 2009, 57: 3253
10 Cheng Y Q, Ma E. Atomic-level structure and structure-property relationship in metallic glasses [J]. Prog. Mater. Sci., 2011, 56: 379
11 Hirata A, Guan P F, Fujita T, et al. Direct observation of local atomic order in a metallic glass [J]. Nat. Mater., 2011, 10: 28
12 Treacy M M J, Borisenko K B. The local structure of amorphous silicon [J]. Science, 2012, 335: 950
13 Ma E, Zhang Z. Reflections from the glass maze [J]. Nat. Mater., 2011, 10: 10
14 Hirata A, Kang L J, Fujita T, et al. Geometric frustration of icosahedron in metallic glasses [J]. Science, 2013, 341: 376
15 Hirata A, Ichitsubo T, Guan P F, et al. Distortion of local atomic structures in amorphous Ge-Sb-Te phase change materials [J]. Phys. Rev. Lett., 2018, 120: 205502
16 Matsubara E, Okada S, Ichitsubo T, et al. Initial atomic motion immediately following femtosecond-laser excitation in phase-change materials [J]. Phys. Rev. Lett., 2016, 117: 135501
17 Ma E. Tuning order in disorder [J]. Nat. Mater., 2015, 14: 547
18 Ma D, Stoica A D, Wang X L. Power-law scaling and fractal nature of medium-range order in metallic glasses [J]. Nat. Mater., 2009, 8: 30
19 Wu Z W, Wang W H. Linking local connectivity to atomic-scale relaxation dynamics in metallic glass-forming systems [J]. Acta Phys. Sin., 2020, 69: 066101
19 武振伟, 汪卫华. 非晶态物质原子局域连接度与弛豫动力学 [J]. 物理学报, 2020, 69: 066101
20 Wu Z W, Li M Z, Wang W H, et al. Hidden topological order and its correlation with glass-forming ability in metallic glasses [J]. Nat. Commun., 2015, 6: 6035
21 Wu Z W, Kob W, Wang W H, et al. Stretched and compressed exponentials in the relaxation dynamics of a metallic glass-forming melt [J]. Nat. Commun., 2018, 9: 5334
22 Wu Z W, Li M Z, Wang W H, et al. Correlation between structural relaxation and connectivity of icosahedral clusters in CuZr metallic glass-forming liquids [J]. Phys. Rev., 2013, 88B: 054202
23 Hiraoka Y, Nakamura T, Hirata A, et al. Hierarchical structures of amorphous solids characterized by persistent homology [J]. Proc. Natl. Acad. Sci. USA, 2016, 113: 7035
24 Sørensen S S, Biscio C A N, Bauchy M, et al. Revealing hidden medium-range order in amorphous materials using topological data analysis [J]. Sci. Adv., 2020, 6: eabc2320
25 Chen M W. A brief overview of bulk metallic glasses [J]. NPG Asia Mater., 2011, 3: 82
26 Laws K J, Miracle D B, Ferry M. A predictive structural model for bulk metallic glasses [J]. Nat. Commun., 2015, 6: 8123
27 Cheng Y Q, Ma E, Sheng H W. Atomic level structure in multicomponent bulk metallic glass [J]. Phys. Rev. Lett., 2009, 102: 245501
28 Ediger M D, Harrowell P. Perspective: Supercooled liquids and glasses [J]. J. Chem. Phys., 2012, 137: 080901
29 Gaskell P H. A new structural model for transition metal-metalloid glasses [J]. Nature, 1978, 276: 484
30 Guan P F, Fujita T, Hirata A, et al. Structural origins of the excellent glass forming ability of Pd40Ni40P20 [J]. Phys. Rev. Lett., 2012, 108: 175501
31 Hu Y C, Wang Y Z, Su R, et al. A highly efficient and self-stabilizing metallic-glass catalyst for electrochemical hydrogen generation [J]. Adv. Mater., 2016, 28: 10293
32 Fujita T, Konno K, Zhang W, et al. Atomic-scale heterogeneity of a multicomponent bulk metallic glass with excellent glass forming ability [J]. Phys. Rev. Lett., 2009, 103: 075502
33 Yuan C C, Yang F, Xi X K, et al. Impact of hybridization on metallic-glass formation and design [J]. Mater. Today, 2020, 32: 26
34 Ichitsubo T, Matsubara E, Yamamoto T, et al. Microstructure of fragile metallic glasses inferred from ultrasound-accelerated crystallization in Pd-based metallic glasses [J]. Phys. Rev. Lett., 2005, 95: 245501
35 Liu Y H, Wang D, Nakajima K, et al. Characterization of nanoscale mechanical heterogeneity in a metallic glass by dynamic force microscopy [J]. Phys. Rev. Lett., 2011, 106: 125504
36 Sun X, Mo G, Zhao L Z, et al. Characterization of nanoscale structural heterogeneity in an amorphous alloy by synchrotron small angle X-ray scattering [J]. Acta Phys. Sin., 2017, 66: 176109
36 孙 星, 默 广, 赵林志等. 小角X射线散射表征非晶合金纳米尺度结构非均匀 [J]. 物理学报, 2017, 66: 176109
37 Widmer-Cooper A, Perry H, Harrowell P, et al. Irreversible reorganization in a supercooled liquid originates from localized soft modes [J]. Nat. Phys., 2008, 4: 711
38 Mizuno H, Shiba H, Ikeda A. Continuum limit of the vibrational properties of amorphous solids [J]. Proc. Natl. Acad. Sci. USA, 2017, 114: E9767
39 Shimada M, Mizuno H, Ikeda A. Anomalous vibrational properties in the continuum limit of glasses [J]. Phys. Rev., 2018, 97E: 022609
40 Ding J, Patinet S, Falk M L, et al. Soft spots and their structural signature in a metallic glass [J]. Proc. Natl. Acad. Sci. USA, 2014, 111: 14052
41 Wang L J, Ninarello A, Guan P F, et al. Low-frequency vibrational modes of stable glasses [J]. Nat. Commun., 2019, 10: 26
42 Rainone C, Bouchbinder E, Lerner E. Pinching a glass reveals key properties of its soft spots [J]. Proc. Natl. Acad. Sci. USA, 2020, 117: 5228
43 Wang L J, Berthier L, Flenner E, et al. Sound attenuation in stable glasses [J]. Soft Matter, 2019, 15: 7018
44 Wang B, Wang L J, Shang B S, et al. Revealing the ultra-low-temperature relaxation peak in a model metallic glass [J]. Acta Mater., 2020, 195: 611
45 Huo L S, Zeng J F, Wang W H, et al. The dependence of shear modulus on dynamic relaxation and evolution of local structural heterogeneity in a metallic glass [J]. Acta Mater., 2013, 61: 4329
46 Knuyt G, de Schepper L, Stals L M. Calculation of some metallic glass properties, based on the use of a gaussian distribution for the nearest-neighbour distance [J]. Philos. Mag., 1990, 61B: 965
47 Lu Z, Jiao W, Wang W H, et al. Flow unit perspective on room temperature homogeneous plastic deformation in metallic glasses [J]. Phys. Rev. Lett., 2014, 113: 045501
48 Hu Y C, Li F X, Li M Z, et al. Five-fold symmetry as indicator of dynamic arrest in metallic glass-forming liquids [J]. Nat. Commun., 2015, 6: 8310
49 Peng H L, Li M Z, Wang W H. Structural signature of plastic deformation in metallic glasses [J]. Phys. Rev. Lett., 2011, 106: 135503
50 Zhao L Z, Wang W H, Bai H Y. Modulation of β-relaxation by modifying structural configurations in metallic glasses [J]. J. Non-Cryst. Solids, 2014, 405: 207
51 Wang J Q, Shen Y, Perepezko J H, et al. Increasing the kinetic stability of bulk metallic glasses [J]. Acta Mater., 2016, 104: 25
52 Sheng H W, Liu H Z, Cheng Y Q, et al. Polyamorphism in a metallic glass [J]. Nat. Mater., 2007, 6: 192
53 Lou H B, Zeng Z D, Zhang F, et al. Two-way tuning of structural order in metallic glasses [J]. Nat. Commun., 2020, 11: 314
54 Wang B, Shang B S, Gao X Q, et al. Understanding atomic-scale features of low temperature-relaxation dynamics in metallic glasses [J]. J. Phys. Chem. Lett., 2016, 7: 4945
55 Hu Y C, Li Y W, Yang Y, et al. Configuration correlation governs slow dynamics of supercooled metallic liquids [J]. Proc. Natl. Acad. Sci. USA, 2018, 115: 6375
56 Tong H, Tanaka H. Revealing hidden structural order controlling both fast and slow glassy dynamics in supercooled liquids [J]. Phys. Rev., 2018, 8X: 011041
57 Wei D, Yang J, Jiang M Q, et al. Revisiting the structure-property relationship of metallic glasses: Common spatial correlation revealed as a hidden rule [J]. Phys. Rev., 2019, 99B: 014115
58 Wang Z, Wang W H. Flow units as dynamic defects in metallic glassy materials [J]. Nat. Sci. Rev., 2019, 6: 304
59 Shang B S, Guan P F, Barrat J L. Elastic avalanches reveal marginal behavior in amorphous solids [J]. Proc. Natl. Acad. Sci. USA, 2020, 117: 86
60 Wang B, Wang L J, Wang W H, et al. Understanding the maximum dynamical heterogeneity during the unfreezing process in metallic glasses [J]. J. Appl. Phys., 2017, 121: 175106
61 Wu Y C, Wang B, Hu Y C, et al. The critical strain—A crossover from stochastic activation to percolation of flow units during stress relaxation in metallic glass [J]. Scr. Mater., 2017, 134: 75
62 Guan P F, Wang B, Wu Y C, et al. Heterogeneity: The soul of metallic glasses [J]. Acta Phys. Sin., 2017, 66: 176112
62 管鹏飞, 王 兵, 吴义成等. 不均匀性: 非晶合金的灵魂 [J]. 物理学报, 2017, 66: 176112
63 Hu Y C, Guan P F, Li M Z, et al. Unveiling atomic-scale features of inherent heterogeneity in metallic glass by molecular dynamics simulations [J]. Phys. Rev., 2016, 93B: 214202
64 Wang B, Zhou Z Y, Guan P F, et al. Invariance of the relation between α relaxation and β relaxation in metallic glasses to variations of pressure and temperature [J]. Phys. Rev., 2020, 102B: 094205
65 Ren N N, Hu L, Wang L J, et al. Revealing a hidden dynamic signature of the non-arrhenius crossover in metallic glass-forming liquids [J]. Scr. Mater., 2020, 181: 43
66 Wang L J, Xu N, Wang W H, et al. Revealing the link between structural relaxation and dynamic heterogeneity in glass-forming liquids [J]. Phys. Rev. Lett., 2018, 120: 125502
67 Mizuno H, Mossa S, Barrat J L. Measuring spatial distribution of the local elastic modulus in glasses [J]. Phys. Rev., 2013, 87E: 042306
68 Shang B S, Rottler J, Guan P F, et al. Local versus global stretched mechanical response in a supercooled liquid near the glass transition [J]. Phys. Rev. Lett., 2019, 122: 105501
69 Guan P F, Chen M W, Egami T. Stress-temperature scaling for steady-state flow in metallic glasses [J]. Phys. Rev. Lett., 2010, 104: 205701
70 Klaumünzer D, Lazarev A, Maaß R, et al. Probing shear-band initiation in metallic glasses [J]. Phys. Rev. Lett., 2011, 107: 185502
71 Guan P F, Lu S, Spector M J B, et al. Cavitation in amorphous solids [J]. Phys. Rev. Lett., 2013, 110: 185502
72 Ma J, Yang C, Liu X D, et al. Fast surface dynamics enabled cold joining of metallic glasses [J]. Sci. Adv., 2019, 5: eaax7256
73 Li H Z, Li Z, Yang J, et al. Interface design enabled manufacture of giant metallic glasses [J]. Sci. China Mater., 2021, 64: 964
74 Topological phase transitions and topological phases of matter [EB/OL]. (2016-10-04).
75 Liu X D, Li X, He Q F, et al. Machine learning-based glass formation prediction in multicomponent alloys [J]. Acta Mater., 2020, 201: 182
76 Lu Z C, Chen X, Liu X J, et al. Interpretable machine-learning strategy for soft-magnetic property and thermal stability in Fe-based metallic glasses [J]. npj Comput. Mater., 2020, 6: 187
77 Fan Z, Ding J, Ma E. Machine learning bridges local static structure with multiple properties in metallic glasses [J]. Mater. Today, 2020, 40: 48
78 An S M, Su R, Zhao S, et al. Ultrasmall nanoparticles inducing order-to-disorder transition [J]. Phys. Rev., 2018, 98B: 134101
79 Sun S J, Guan P F. The critical model size for simulating the structure-dynamics correlation in bulk metallic glasses [J]. Sci. China Mater., 2021. DOI: 10.1007/s40843-020-1537-y
[1] 孙小钧, 何杰, 陈斌, 赵九洲, 江鸿翔, 张丽丽, 郝红日. Fe含量对Zr60Cu40-xFex相分离非晶合金组织结构、电阻性能和纳米压痕行为的影响[J]. 金属学报, 2021, 57(5): 675-683.
[2] 杨群, 彭思旭, 卜庆周, 于海滨. 非晶态Ni80P20合金的玻璃转变和过冷液体性质[J]. 金属学报, 2021, 57(4): 553-558.
[3] 蒋敏强, 高洋. 金属玻璃的结构年轻化及其对力学行为的影响[J]. 金属学报, 2021, 57(4): 425-438.
[4] 张倪侦, 马昕迪, 耿川, 穆永坤, 孙康, 贾延东, 黄波, 王刚. Ag元素添加对Cu-Zr-Al基金属玻璃纳米压痕行为的影响[J]. 金属学报, 2021, 57(4): 567-574.
[5] 屈瑞涛, 王晓地, 吴少杰, 张哲峰. 金属玻璃的剪切带变形与断裂机制研究进展[J]. 金属学报, 2021, 57(4): 453-472.
[6] 曾桥石, 尹梓梁, 楼鸿波. 金属玻璃中的非晶多形态转变[J]. 金属学报, 2021, 57(4): 491-500.
[7] 曹庆平, 吕林波, 王晓东, 蒋建中. 物理气相沉积制备金属玻璃薄膜及其力学性能的样品尺寸效应[J]. 金属学报, 2021, 57(4): 473-490.
[8] 黄火根, 张鹏国, 张培, 王勤国. U-CoU-Fe基础体系非晶形成能力的比较[J]. 金属学报, 2020, 56(6): 849-854.
[9] 张军,介子奇,黄太文,杨文超,刘林,傅恒志. 镍基铸造高温合金等轴晶凝固成形技术的研究和进展[J]. 金属学报, 2019, 55(9): 1145-1159.
[10] 周洪波, 李宇浩, 吕广宏. W中H行为的计算模拟研究[J]. 金属学报, 2018, 54(2): 301-313.
[11] 赵燕春, 孙浩, 李春玲, 蒋建龙, 毛瑞鹏, 寇生中, 李春燕. 高强韧Ti-Ni基块体金属玻璃复合材料高温变形行为[J]. 金属学报, 2018, 54(12): 1818-1824.
[12] 汪卫华, 罗鹏. 金属玻璃中隐藏在长时间尺度下的动力学行为及其对性能的影响[J]. 金属学报, 2018, 54(11): 1479-1489.
[13] 贾婷婷,坚增运,许军锋,朱满,常芳娥. Ge30Se70硫系玻璃的特征温度和性能*[J]. 金属学报, 2016, 52(6): 755-760.
[14] 张哲峰, 屈瑞涛, 刘增乾. 金属玻璃的断裂行为与强度理论研究进展*[J]. 金属学报, 2016, 52(10): 1171-1182.
[15] 沈勇,徐坚. Zr46.9Cu45.5Al5.6Y2.0金属玻璃含B2-CuZr相内生复合材料的制备及其力学性能*[J]. 金属学报, 2015, 51(11): 1407-1415.