|
|
690 MPa级高强韧低碳微合金建筑结构钢设计及性能 |
朱雯婷1, 崔君军1, 陈振业1,2, 冯阳1, 赵阳3, 陈礼清1( ) |
1.东北大学 轧制技术及连轧自动化国家重点实验室 沈阳 110819 2.河钢集团钢研总院 技术研究所 石家庄 050000 3.东北大学 材料科学与工程学院 沈阳 110819 |
|
Design and Performance of 690 MPa Grade Low-Carbon Microalloyed Construction Structural Steel with High Strength and Toughness |
ZHU Wenting1, CUI Junjun1, CHEN Zhenye1,2, FENG Yang1, ZHAO Yang3, CHEN Liqing1( ) |
1.State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China 2.Technical Department, Technology Research Institute of HBIS, Shijiazhuang 050000, China 3.School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China |
引用本文:
朱雯婷, 崔君军, 陈振业, 冯阳, 赵阳, 陈礼清. 690 MPa级高强韧低碳微合金建筑结构钢设计及性能[J]. 金属学报, 2021, 57(3): 340-352.
Wenting ZHU,
Junjun CUI,
Zhenye CHEN,
Yang FENG,
Yang ZHAO,
Liqing CHEN.
Design and Performance of 690 MPa Grade Low-Carbon Microalloyed Construction Structural Steel with High Strength and Toughness[J]. Acta Metall Sin, 2021, 57(3): 340-352.
1 |
Ishii T, Fujisawa S, Ohmori A. Overview and application of steel materials for high-rise buildings [J]. JFE Tech. Rep., No.14, 2009: 1
|
2 |
Sakumoto Y. Recent trends and future direction in the technology for structural steels used in buildings [J]. Nippon Steel Tech. Rep., No.97, 2008: 8
|
3 |
Yu Q B, Zhao X P, Sun B, et al. Yield-strength ratio of steel plate for high-rise building [J]. Iron Steel, 2007, 42(11): 74
|
3 |
于庆波, 赵贤平, 孙 斌等. 高层建筑用钢板的屈强比 [J]. 钢铁, 2007, 42(11): 74
|
4 |
Kato B. Role of strain-hardening of steel in structural performance [J]. ISIJ Int., 1990, 30: 1003
|
5 |
Kim Y, Lee J, Park J, et al. Effect of Si content on wettability of dual phase high strength steels by liquid Zn-0.23 wt.%Al [J]. Met. Mater. Int., 2011, 17: 607
|
6 |
Huang G, Wu K M. The effect of relaxing on the grain refinement of low carbon high strength microalloyed steel produced by compact strip production [J]. Met. Mater. Int., 2011, 17: 847
|
7 |
Prasad S N, Mediratta S R, Sarma D S. Influence of austenitisation temperature on the structure and properties of weather resistant steels [J]. Mater. Sci. Eng., 2003, A358: 288
|
8 |
Prasad S N, Sarma D S. Influence of thermomechanical treatment on microstructure and mechanical properties of a microalloyed (Nb+V) weather-resistant steel [J]. Mater. Sci. Eng., 2005, A399: 161
|
9 |
Zhao Y T, Yang S W, Shang C J, et al. The mechanical properties and corrosion behaviors of ultra-low carbon microalloying steel [J]. Mater. Sci. Eng., 2007, A454-455: 695
|
10 |
Baker T N. Processes, microstructure and properties of vanadium microalloyed steels [J]. Mater. Sci. Technol., 2009, 25: 1083
|
11 |
Lee S I, Lee J, Hwang B. Microstructure-based prediction of yield ratio and uniform elongation in high-strength bainitic steels using multiple linear regression analysis [J]. Mater. Sci. Eng., 2019, A758: 56
|
12 |
Hulka K, Kern A, Schriever U. Application of niobium in quenched and tempered high-strength steels [J]. Mater. Sci. Forum., 2005, 500-501: 519
|
13 |
Yang H, Yang H, Qu J B. Effect of heat treatment on microstructure and mechanical properties of a 690 MPa grade high strength steel with low yield ratio [J]. Trans. Mater. Heat Treat., 2013, 34(5): 137
|
13 |
杨 浩, 杨 汉, 曲锦波. 热处理工艺对690 MPa级低屈强比高强钢组织性能的影响 [J]. 材料热处理学报, 2013, 34(5): 137
|
14 |
Tong M W. Development of 550/690MPa high strength-toughness construction steels with low yield ratio and research of its anti-fracture performance [D]. Wuhan: Wuhan University of Science and Technology, 2016
|
14 |
童明伟. 550/690MPa级高强韧低屈强比结构钢开发及抗断能力研究 [D]. 武汉: 武汉科技大学, 2016
|
15 |
Keiji U, Shigeru E, Takayuki I. 780 MPa grade steel plates with low yield ratio by microstructural control of dual phase [J]. JFE Technical Report, 2007, (18): 23
|
15 |
植田 圭治, 遠藤 茂, 伊藤 高幸. 硬質第2相分散組織制御型低YR780MPa級鋼板 [J]. JFE技報, 2007, (18): 23
|
16 |
Hui Y J, Zhao A M, Zhao Z Z, et al. Study on ultra-low carbon bainite steel with low yield ratio for engineering machinery [J]. Trans. Mater. Heat Treat., 2012, 33(Suppl.II):92
|
16 |
惠亚军, 赵爱民, 赵征志等. 低屈强比超低碳贝氏体型工程机械用钢的研究 [J]. 材料热处理学报, 2012, 33(增刊II):92
|
17 |
Zhou Y L, Chen J, Xu Y, et al. Effects of Cr, Ni and Cu on the corrosion behavior of low carbon microalloying steel in a Cl‒ containing environment [J]. J. Mater. Sci. Technol., 2013, 29: 168
|
18 |
Misra R D K, Nathani H, Hartmann J E, et al. Microstructural evolution in a new 770 MPa hot rolled Nb-Ti microalloyed steel [J]. Mater. Sci. Eng., 2005, A394: 339
|
19 |
Hu J, Du L X, Wang W H, et al. Microstructural control and mechanical properties of 590 MPa grade hot-rolled V-N high strength steel [J]. J. Northeast. Univ. (Nat. Sci.), 2013, 34: 820
|
19 |
胡 军, 杜林秀, 王万慧等. 590 MPa级热轧V-N高强车轮钢组织性能控制 [J]. 东北大学学报(自然科学版), 2013, 34: 820
|
20 |
Xu M, Sun X J, Liu Q Y, et al. Microstructural evolution and precipitation of V(C, N) in a low-carbon V-bearing steel [J]. Iron Steel Vanad. Titan., 2005, 26(2): 25
|
20 |
徐 曼, 孙新军, 刘清友等. 低碳含钒钢组织变化及V(C, N)析出规律 [J]. 钢铁钒钛, 2005, 26(2): 25
|
21 |
Kanga J S, Seol J B, Park C G. Three-dimensional characterization of bainitic microstructures in low-carbon high-strength low-alloy steel studied by electron backscatter diffraction [J]. Mater. Charact., 2013, 79: 110
|
22 |
Sung H K, Lee D H, Shin S Y, et al. Effect of finish cooling temperature on microstructure and mechanical properties of high-strength bainitic steels containing Cr, Mo, and B [J]. Mater. Sci. Eng., 2015, A624: 14
|
23 |
Ohmori Y, Ohtani H, Kunitake T. Tempering of the bainite and the bainite/martensite duplex structure in a low-carbon low-alloy steel [J]. Met. Sci., 1974, 8: 357
|
24 |
Bhadeshia H K D H. Models for the Elementary Mechanical Properties of Steel Welds [M]. London: Institute of Materials, 1997: 229
|
25 |
Yong Q L. Secondary Phases in Steels [M]. Beijing: Metallurgy Industry Press, 2006: 159
|
25 |
雍岐龙. 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006: 159
|
26 |
Kim Y W, Song S W, Seo S J, et al. Development of Ti and Mo micro-alloyed hot-rolled high strength sheet steel by controlling thermomechanical controlled processing schedule [J]. Mater. Sci. Eng., 2013, A565: 430
|
27 |
Tang X C, Wang X F, Zhang Z J. Research on precipitation behavior and strengthening mechanism of low carbon bainitic high strength steel [J]. Hot Work. Technol., 2018, 47(16): 92
|
27 |
唐兴昌, 王向飞, 张志坚. 低碳贝氏体高强钢的析出行为及强化机理研究 [J]. 热加工工艺, 2018, 47(16): 92
|
28 |
Hall E O. The deformation and ageing of mild steel: III Discussion of results [J]. Proc. Phys. Soc., 1951, 64B: 747
|
29 |
Petch N J, Stables P. Delayed fracture of metals under static load [J]. Nature, 1952, 169: 842
|
30 |
Bhadeshia H K D H. Bainite in Steels: Transformations, Microstructure and Properties [M]. 2nd Ed., London: IOM Communications, 2001: 1
|
31 |
Gladman T. Precipitation hardening in metals [J]. Mater. Sci. Technol., 1999, 15: 30
|
32 |
Hu J, Du L X, Xie H, et al. Microstructure and mechanical properties of TMCP heavy plate microalloyed steel [J]. Mater. Sci. Eng., 2014, A607: 122
|
33 |
Cui J J, Zhu W T, Chen Z Y, et al. Effect of simulated cooling time on microstructure and toughness of CGHAZ in novel high-strength low-carbon construction steel [J]. Sci. Technol. Weld. Joining, 2020, 25: 169
|
34 |
Chen J, Tang S, Liu Z Y, et al. Microstructural characteristics with various cooling paths and the mechanism of embrittlement and toughening in low-carbon high performance bridge steel [J]. Mater. Sci. Eng., 2013, A559: 241
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|