|
|
一种第二代镍基单晶高温合金1150 ℃原位拉伸断裂机制研究 |
马晋遥1,王晋1,赵云松3,张剑3,张跃飞1( ),李吉学2,张泽2 |
1. 北京工业大学固体微结构与性能研究所 北京 100124 2. 浙江大学材料科学与工程学院 杭州 310027 3. 中国航发北京航空材料研究院先进高温结构材料重点实验室 北京 100095 |
|
Investigation of In Situ 1150 ℃ High Temperature Deformation Behavior and Fracture Mechanism of a Second Generation Single Crystal Superalloy |
Jinyao MA1,Jin WANG1,Yunsong ZHAO3,Jian ZHANG3,Yuefei ZHANG1( ),Jixue LI2,Ze ZHANG2 |
1. Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124, China 2. School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China 3. Key Laboratory of Advanced High Temperature Structural Materials, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China |
引用本文:
马晋遥,王晋,赵云松,张剑,张跃飞,李吉学,张泽. 一种第二代镍基单晶高温合金1150 ℃原位拉伸断裂机制研究[J]. 金属学报, 2019, 55(8): 987-996.
Jinyao MA,
Jin WANG,
Yunsong ZHAO,
Jian ZHANG,
Yuefei ZHANG,
Jixue LI,
Ze ZHANG.
Investigation of In Situ 1150 ℃ High Temperature Deformation Behavior and Fracture Mechanism of a Second Generation Single Crystal Superalloy[J]. Acta Metall Sin, 2019, 55(8): 987-996.
[1] | Guo J T. Materials Science and Engineering for Superalloys (Book 1) [M]. Beijing: Science Press, 2008: 182 | [1] | (郭建亭. 高温合金材料学(上册) [M]. 北京: 科学出版社, 2008: 182) | [2] | Chen R Z. Development status of single crystal superalloys [J]. J. Mater. Eng., 1995, (8): 3 | [2] | (陈荣章. 单晶高温合金发展现状 [J]. 材料工程, 1995, (8): 3) | [3] | Yu J, Li J R, Shi Z X, et al. Tensile behavior and deformation mechanism of single crystal superalloy DD6 at 760 ℃ and 1070 ℃ [J]. J. Aeronaut. Mater., 2015, 35(5): 13 | [3] | (喻 健, 李嘉荣, 史振学等. DD6单晶高温合金760 ℃和1070 ℃拉伸行为与变形机制 [J]. 航空材料学报, 2015, 35(5): 13) | [4] | Li J R, Jin H P, Liu S. Stress rupture properties and microstructures of the second generation single crystal superalloy DD6 after long term aging at 980 ℃ [J]. Rare Met. Mater. Eng., 2007, 36: 1784 | [5] | Roebuck B, Cox D, Reed R. The temperature dependence of γ′ volume fraction in a Ni-based single crystal superalloy from resistivity measurements [J]. Scr. Mater., 2001, 44: 917 | [6] | Tang Y, Ming H, Xiong J, et al. Evolution of superdislocation structures during tertiary creep of a nickel-based single-crystal superalloy at high temperature and low stress [J]. Acta Mater., 2017, 126: 336 | [7] | Al-Jarba K A, Fuchs G E. Effect of carbon additions on the as-cast microstructure and defect formation of a single crystal Ni-based superalloy [J]. Mater. Sci. Eng., 2004, A373: 255 | [8] | Li T R, Liu G H, Xu M, et al. Microstructures and high temperature tensile properties of Ti-43Al-4Nb-1.5Mo alloy in the canned forging and heat treatment process [J]. Acta Metall. Sin., 2017, 53: 1055 | [8] | (李天瑞, 刘国怀, 徐 莽等. Ti-43Al-4Nb-1.5Mo合金包套锻造与热处理过程的微观组织及高温拉伸性能 [J]. 金属学报, 2017, 53: 1055) | [9] | Zhang S C, Li X D, Yu H C, et al. Low cycle fatigue of single crystal nickel-based superalloy DD6 at 1100 ℃ [J]. J. Aeronaut. Mater., 2018, 38(1): 95 | [9] | (张仕朝, 李旭东, 于慧臣等. DD6合金1100℃低周疲劳行为 [J]. 航空材料学报, 2018, 38(1): 95) | [10] | Baik S I, Rawlings M J S, Dunand D C. Effect of hafnium micro-addition on precipitate microstructure and creep properties of a Fe-Ni-Al-Cr-Ti ferritic superalloy [J]. Acta Mater., 2018, 153: 126. | [11] | Chen J Y, Zhao B, Feng Q, et al. Effects of Ru and Cr on γ/γ' microstructural evolution of Ni-based single crystal superalloys during heat treatment [J]. Acta Metall. Sin., 2010, 46: 897 | [11] | (陈晶阳, 赵 宾, 冯 强等. Ru和Cr对镍基单晶高温合金γ/γ'热处理组织演变的影响 [J]. 金属学报, 2010, 46: 897) | [12] | Nganbe M, Heilmaier M. Modelling of particle strengthening in the γ' and oxide dispersion strengthened nickel-base superalloy PM3030 [J]. Mater. Sci. Eng., 2004, A387-389: 609 | [13] | Wang K G, Li J R, Liu S Z, et al. Study on creep properties of single crystal superalloy DD6 at 760 ℃ [J]. J. Mater. Eng., 2004, (5): 7 | [13] | (王开国, 李嘉荣, 刘世忠等. DD6单晶高温合金760 ℃的蠕变性能研究 [J]. 材料工程, 2004, (5): 7) | [14] | Murakumo T, Kobayashi T, Koizumi Y, et al. Creep behaviour of Ni-base single-crystal superalloys with various γ' volume fraction [J]. Acta Mater., 2004, 52: 3737 | [15] | Shi Z X, Li J R, Liu S Z, et al. Transverse tensile properties and fracture behaviour of DD6 single crystal superalloy [J]. J. Aeronaut. Mater., 2009, 29(2): 101 | [15] | (史振学, 李嘉荣, 刘世忠等. DD6单晶高温合金横向拉伸性能及其断裂行为 [J]. 航空材料学报, 2009, 29(2): 101) | [16] | Shi Z X, Liu S Z, Xiong J C, et al. Microstructure evolution behavior of DD6 single crystal superalloy at different using temperatures [J]. Chin. J. Nonferrous Met., 2015, 25: 3077 | [16] | (史振学, 刘世忠, 熊继春等. 不同使用温度下DD6单晶高温合金的组织演变行为 [J]. 中国有色金属学报, 2015, 25: 3077) | [17] | Wang J J, Guo W G, Li P H, et al. Dynamic tensile properties of a single crystal nickel-base superalloy at high temperatures measured with an improved SHTB technique [J]. Mater. Sci. Eng., 2016, A670: 1 | [18] | Zhao J Q, Li J R, Liu S Z, et al. Effects of low angle grain boundaries on stress rupture properties of single crystal superalloy DD6 [J]. J. Aeronaut. Mater., 2007, 27(6): 6 | [18] | (赵金乾, 李嘉荣, 刘世忠等. 小角度晶界对单晶高温合金DD6持久性能的影响 [J]. 航空材料学报, 2007, 27(6): 6) | [19] | Qin J C, Cui R J, Huang Z H, et al. Effect of low angle grain boundaries on mechanical properties of DD5 single crystal Ni-base superalloy [J]. J. Aeronaut. Mater., 2017, 37(3): 24 | [19] | (秦健朝, 崔仁杰, 黄朝晖等. 小角度晶界对DD5镍基单晶高温合金力学性能的影响 [J]. 航空材料学报, 2017, 37(3): 24) | [20] | Hemmersmeier U, Feller-Kniepmeier M. Element distribution in the macro- and microstructure of nickel base superalloy CMSX-4 [J]. Mater. Sci. Eng., 1998, A248: 87 | [21] | Zhang S M, Yu J G, Huang Z Y, et al. Directional migration behavior of alloying elements in the rafting process of the single crystal superalloy DD6 [J]. Rare Met. Mater. Eng., 2016, 45: 1147 | [22] | Wheeler J M, Armstrong D E J, Heinz W, et al. High temperature nanoindentation: The state of the art and future challenges [J]. Curr. Opin. Solid State Mater. Sci., 2015, 19: 354 | [23] | Zhang W J, Song X Y, Hui S X, et al. In-situ SEM observations of fracture behavior of BT25y alloy during tensile process at different temperature [J]. Mater. Des., 2017, 116: 638 | [24] | Wang J, Zhang Y F, Ma J Y, et al. Microcrack nucleation and propagation investigation of Inconel 740H alloy under in situ high temperature tensile test [J]. Acta Metall. Sin., 2017, 53: 1627 | [24] | (王 晋, 张跃飞, 马晋遥等. Inconel740H合金原位高温拉伸微裂纹萌生扩展研究 [J]. 金属学报, 2017, 53: 1627) | [25] | Liang J C, Wang Z, Xie H F, et al. In situ scanning electron microscopy-based high-temperature deformation measurement of nickel-based single crystal superalloy up to 800 ℃ [J]. Opt. Lasers Eng., 2018, 108: 1 | [26] | Bokstein B S, Epishin A I, Link T, et al. Model for the porosity growth in single-crystal nickel-base superalloys during homogenization [J]. Scr. Mater., 2007, 57: 801 | [27] | Chen Q Z, Kong Y H, Jones C N, et al. Porosity reduction by minor additions in RR2086 superalloy [J]. Scr. Mater., 2004, 51: 155 | [28] | Wang G L, Liu J L, Liu J D, et al. Temperature dependence of tensile behavior and deformation microstructure of a Re-containing Ni-base single crystal superalloy [J]. Mater. Des., 2017, 130: 131 | [29] | Luo Z P, Wu Z T, Miller D J. The dislocation microstructure of a nickel-base single-crystal superalloy after tensile fracture [J]. Mater. Sci. Eng., 2003, A354: 358 | [30] | Zhang L, Zhao L G, Roy A, et al. In-situ SEM study of slip-controlled short-crack growth in single-crystal nickel superalloy [J]. Mater. Sci. Eng., 2019, A742: 564 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|