Please wait a minute...
金属学报  2019, Vol. 55 Issue (8): 987-996    DOI: 10.11900/0412.1961.2019.00013
  本期目录 | 过刊浏览 |
一种第二代镍基单晶高温合金1150 ℃原位拉伸断裂机制研究
马晋遥1,王晋1,赵云松3,张剑3,张跃飞1(),李吉学2,张泽2
1. 北京工业大学固体微结构与性能研究所 北京 100124
2. 浙江大学材料科学与工程学院 杭州 310027
3. 中国航发北京航空材料研究院先进高温结构材料重点实验室 北京 100095
Investigation of In Situ 1150 High Temperature Deformation Behavior and Fracture Mechanism of a Second Generation Single Crystal Superalloy
Jinyao MA1,Jin WANG1,Yunsong ZHAO3,Jian ZHANG3,Yuefei ZHANG1(),Jixue LI2,Ze ZHANG2
1. Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124, China
2. School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
3. Key Laboratory of Advanced High Temperature Structural Materials, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
引用本文:

马晋遥,王晋,赵云松,张剑,张跃飞,李吉学,张泽. 一种第二代镍基单晶高温合金1150 ℃原位拉伸断裂机制研究[J]. 金属学报, 2019, 55(8): 987-996.
Jinyao MA, Jin WANG, Yunsong ZHAO, Jian ZHANG, Yuefei ZHANG, Jixue LI, Ze ZHANG. Investigation of In Situ 1150 High Temperature Deformation Behavior and Fracture Mechanism of a Second Generation Single Crystal Superalloy[J]. Acta Metall Sin, 2019, 55(8): 987-996.

全文: PDF(26817 KB)   HTML
摘要: 

通过自主研发的原位加热拉伸测试平台,在SEM中对[001]取向的第二代镍基单晶高温合金进行了1150 ℃高温拉伸测试,并得到了可靠的力学性能实验数据与高质量的实时序列SEM像。对力-位移曲线的分析表明,该单晶高温合金在1150 ℃的屈服强度与断裂强度分别为580与620 MPa。通过分析拉伸过程中的实时序列SEM像,发现该单晶合金在弹性变形阶段γγ′相并未发生明显变化;当进入塑性变形阶段,单晶合金中γ相在平行于应力轴方向变形被拉长,同时裂纹在样品原始显微孔洞垂直于应力轴方向最先产生,随着应力的增大绕过γ'相在γ相中扩展,最终裂纹连接相邻孔洞导致单晶合金断裂。

关键词 镍基单晶高温合金原位SEM高温拉伸微观组织裂纹    
Abstract

Single-crystal superalloy is the key material of turbine blade and hot end parts in aerospace field. The second generation nickel-based single crystal superalloy has been widely used because of its low cost and excellent high temperature properties. At present, the research on microstructure of superalloys at high temperature mainly depends on SEM and TEM observation after heating and loading experiment. However, such kind of work lacks real-time characterization capabilities. Carrying out in situ experiments has an important significance for understanding the real time deformation behavior and microstructure evolution of superalloys. Therefore, the development of an in situ high temperature (above 1000 ℃) mechanical testing equipment for SEM faces huge challenges. In this work, high temperature tensile experiment at 1150 ℃ of a second generation single crystal nickel-based superalloy were carried out by means of a self-developed in situ heating tensile platform which can used in SEM. A high quality experimental data and serial SEM images were obtained in the course of tensile testing at 1150 ℃. The analysis of force-displacement curve shows that the yield strength and fracture strength of the specimen are 580 and 620 MPa, respectively. The sequential SEM images during this research confirm that there is no obvious shape and size change for γ and γ′ during the elastic deformation, and microstructure changing during plastic stage is mainly due to γ phase widening which is parallel to the stress axis. The results show that the original micro-voids of samples are the weakness in high temperature tensile test at 1150 ℃, the fracture direction is almost perpendicular to the stress axis, the crack propagated by passing the γ′ phase and through in the γ phase, and ultimately, temperature and stress induced adjacent holes connection leading to the sample fracture.

Key wordsnickel-based single crystal superalloy    in situ SEM    high temperature tensile    microstructure    crack
收稿日期: 2019-01-16     
ZTFLH:  TG132.3  
基金资助:国家重大科研仪器研制项目(No.11327901)
作者简介: 马晋遥,男,1989年生,博士
图1  原位加热拉伸试样尺寸
图2  加热拉伸实验平台与SEM联用照片及加热拉伸平台结构示意图
图3  镍基单晶高温合金微观组织形貌与EDS面分布
图4  不同区域加热的电压-温度曲线
图5  加热过程镍基单晶高温合金微观组织与加热拉伸平台CCD照片
图6  镍基单晶高温合金样品1150 ℃原位拉伸力-位移曲线
图7  镍基单晶高温合金1150 ℃原位拉伸过程中不同载荷状态下样品形变过程
图8  镍基单晶高温合金在加载应力620 MPa时1150 ℃拉伸屈服阶段样品表面微观孔洞的演变过程
图9  镍基单晶高温合金断口附近显微组织SEM像
图10  镍基单晶高温合金1150 ℃原位拉伸显微孔洞演变与变形行为
图11  镍基单晶高温合金1150 ℃原位拉伸断口形貌
[1] Guo J T. Materials Science and Engineering for Superalloys (Book 1) [M]. Beijing: Science Press, 2008: 182
[1] (郭建亭. 高温合金材料学(上册) [M]. 北京: 科学出版社, 2008: 182)
[2] Chen R Z. Development status of single crystal superalloys [J]. J. Mater. Eng., 1995, (8): 3
[2] (陈荣章. 单晶高温合金发展现状 [J]. 材料工程, 1995, (8): 3)
[3] Yu J, Li J R, Shi Z X, et al. Tensile behavior and deformation mechanism of single crystal superalloy DD6 at 760 ℃ and 1070 ℃ [J]. J. Aeronaut. Mater., 2015, 35(5): 13
[3] (喻 健, 李嘉荣, 史振学等. DD6单晶高温合金760 ℃和1070 ℃拉伸行为与变形机制 [J]. 航空材料学报, 2015, 35(5): 13)
[4] Li J R, Jin H P, Liu S. Stress rupture properties and microstructures of the second generation single crystal superalloy DD6 after long term aging at 980 ℃ [J]. Rare Met. Mater. Eng., 2007, 36: 1784
[5] Roebuck B, Cox D, Reed R. The temperature dependence of γ′ volume fraction in a Ni-based single crystal superalloy from resistivity measurements [J]. Scr. Mater., 2001, 44: 917
[6] Tang Y, Ming H, Xiong J, et al. Evolution of superdislocation structures during tertiary creep of a nickel-based single-crystal superalloy at high temperature and low stress [J]. Acta Mater., 2017, 126: 336
[7] Al-Jarba K A, Fuchs G E. Effect of carbon additions on the as-cast microstructure and defect formation of a single crystal Ni-based superalloy [J]. Mater. Sci. Eng., 2004, A373: 255
[8] Li T R, Liu G H, Xu M, et al. Microstructures and high temperature tensile properties of Ti-43Al-4Nb-1.5Mo alloy in the canned forging and heat treatment process [J]. Acta Metall. Sin., 2017, 53: 1055
[8] (李天瑞, 刘国怀, 徐 莽等. Ti-43Al-4Nb-1.5Mo合金包套锻造与热处理过程的微观组织及高温拉伸性能 [J]. 金属学报, 2017, 53: 1055)
[9] Zhang S C, Li X D, Yu H C, et al. Low cycle fatigue of single crystal nickel-based superalloy DD6 at 1100 ℃ [J]. J. Aeronaut. Mater., 2018, 38(1): 95
[9] (张仕朝, 李旭东, 于慧臣等. DD6合金1100℃低周疲劳行为 [J]. 航空材料学报, 2018, 38(1): 95)
[10] Baik S I, Rawlings M J S, Dunand D C. Effect of hafnium micro-addition on precipitate microstructure and creep properties of a Fe-Ni-Al-Cr-Ti ferritic superalloy [J]. Acta Mater., 2018, 153: 126.
[11] Chen J Y, Zhao B, Feng Q, et al. Effects of Ru and Cr on γ/γ' microstructural evolution of Ni-based single crystal superalloys during heat treatment [J]. Acta Metall. Sin., 2010, 46: 897
[11] (陈晶阳, 赵 宾, 冯 强等. Ru和Cr对镍基单晶高温合金γ/γ'热处理组织演变的影响 [J]. 金属学报, 2010, 46: 897)
[12] Nganbe M, Heilmaier M. Modelling of particle strengthening in the γ' and oxide dispersion strengthened nickel-base superalloy PM3030 [J]. Mater. Sci. Eng., 2004, A387-389: 609
[13] Wang K G, Li J R, Liu S Z, et al. Study on creep properties of single crystal superalloy DD6 at 760 ℃ [J]. J. Mater. Eng., 2004, (5): 7
[13] (王开国, 李嘉荣, 刘世忠等. DD6单晶高温合金760 ℃的蠕变性能研究 [J]. 材料工程, 2004, (5): 7)
[14] Murakumo T, Kobayashi T, Koizumi Y, et al. Creep behaviour of Ni-base single-crystal superalloys with various γ' volume fraction [J]. Acta Mater., 2004, 52: 3737
[15] Shi Z X, Li J R, Liu S Z, et al. Transverse tensile properties and fracture behaviour of DD6 single crystal superalloy [J]. J. Aeronaut. Mater., 2009, 29(2): 101
[15] (史振学, 李嘉荣, 刘世忠等. DD6单晶高温合金横向拉伸性能及其断裂行为 [J]. 航空材料学报, 2009, 29(2): 101)
[16] Shi Z X, Liu S Z, Xiong J C, et al. Microstructure evolution behavior of DD6 single crystal superalloy at different using temperatures [J]. Chin. J. Nonferrous Met., 2015, 25: 3077
[16] (史振学, 刘世忠, 熊继春等. 不同使用温度下DD6单晶高温合金的组织演变行为 [J]. 中国有色金属学报, 2015, 25: 3077)
[17] Wang J J, Guo W G, Li P H, et al. Dynamic tensile properties of a single crystal nickel-base superalloy at high temperatures measured with an improved SHTB technique [J]. Mater. Sci. Eng., 2016, A670: 1
[18] Zhao J Q, Li J R, Liu S Z, et al. Effects of low angle grain boundaries on stress rupture properties of single crystal superalloy DD6 [J]. J. Aeronaut. Mater., 2007, 27(6): 6
[18] (赵金乾, 李嘉荣, 刘世忠等. 小角度晶界对单晶高温合金DD6持久性能的影响 [J]. 航空材料学报, 2007, 27(6): 6)
[19] Qin J C, Cui R J, Huang Z H, et al. Effect of low angle grain boundaries on mechanical properties of DD5 single crystal Ni-base superalloy [J]. J. Aeronaut. Mater., 2017, 37(3): 24
[19] (秦健朝, 崔仁杰, 黄朝晖等. 小角度晶界对DD5镍基单晶高温合金力学性能的影响 [J]. 航空材料学报, 2017, 37(3): 24)
[20] Hemmersmeier U, Feller-Kniepmeier M. Element distribution in the macro- and microstructure of nickel base superalloy CMSX-4 [J]. Mater. Sci. Eng., 1998, A248: 87
[21] Zhang S M, Yu J G, Huang Z Y, et al. Directional migration behavior of alloying elements in the rafting process of the single crystal superalloy DD6 [J]. Rare Met. Mater. Eng., 2016, 45: 1147
[22] Wheeler J M, Armstrong D E J, Heinz W, et al. High temperature nanoindentation: The state of the art and future challenges [J]. Curr. Opin. Solid State Mater. Sci., 2015, 19: 354
[23] Zhang W J, Song X Y, Hui S X, et al. In-situ SEM observations of fracture behavior of BT25y alloy during tensile process at different temperature [J]. Mater. Des., 2017, 116: 638
[24] Wang J, Zhang Y F, Ma J Y, et al. Microcrack nucleation and propagation investigation of Inconel 740H alloy under in situ high temperature tensile test [J]. Acta Metall. Sin., 2017, 53: 1627
[24] (王 晋, 张跃飞, 马晋遥等. Inconel740H合金原位高温拉伸微裂纹萌生扩展研究 [J]. 金属学报, 2017, 53: 1627)
[25] Liang J C, Wang Z, Xie H F, et al. In situ scanning electron microscopy-based high-temperature deformation measurement of nickel-based single crystal superalloy up to 800 ℃ [J]. Opt. Lasers Eng., 2018, 108: 1
[26] Bokstein B S, Epishin A I, Link T, et al. Model for the porosity growth in single-crystal nickel-base superalloys during homogenization [J]. Scr. Mater., 2007, 57: 801
[27] Chen Q Z, Kong Y H, Jones C N, et al. Porosity reduction by minor additions in RR2086 superalloy [J]. Scr. Mater., 2004, 51: 155
[28] Wang G L, Liu J L, Liu J D, et al. Temperature dependence of tensile behavior and deformation microstructure of a Re-containing Ni-base single crystal superalloy [J]. Mater. Des., 2017, 130: 131
[29] Luo Z P, Wu Z T, Miller D J. The dislocation microstructure of a nickel-base single-crystal superalloy after tensile fracture [J]. Mater. Sci. Eng., 2003, A354: 358
[30] Zhang L, Zhao L G, Roy A, et al. In-situ SEM study of slip-controlled short-crack growth in single-crystal nickel superalloy [J]. Mater. Sci. Eng., 2019, A742: 564
[1] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[3] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[5] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[6] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[7] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[8] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[9] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[10] 韩卫忠, 卢岩, 张雨衡. 体心立方金属韧脆转变机制研究进展[J]. 金属学报, 2023, 59(3): 335-348.
[11] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[12] 杨杜, 白琴, 胡悦, 张勇, 李志军, 蒋力, 夏爽, 周邦新. GH3535合金中晶界特征对碲致脆性开裂影响的分形分析[J]. 金属学报, 2023, 59(2): 248-256.
[13] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[14] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[15] 张子轩, 于金江, 刘金来. 镍基单晶高温合金DD432的持久性能各向异性[J]. 金属学报, 2023, 59(12): 1559-1567.