|
|
C含量对Fe-Mn-Al-C低密度钢组织和性能的影响 |
陈兴品1( ),李文佳1,任平1,曹文全2,刘庆1 |
1. 重庆大学材料科学与工程学院 重庆 400044 2. 钢铁研究总院特殊钢研究所 北京 100081 |
|
Effects of C Content on Microstructure and Properties ofFe-Mn-Al-C Low-Density Steels |
Xingpin CHEN1( ),Wenjia LI1,Ping REN1,Wenquan CAO2,Qing LIU1 |
1. College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China 2. Special Steel Department of Central Iron & Steel Research Institute, Beijing 100081, China |
引用本文:
陈兴品,李文佳,任平,曹文全,刘庆. C含量对Fe-Mn-Al-C低密度钢组织和性能的影响[J]. 金属学报, 2019, 55(8): 951-957.
Xingpin CHEN,
Wenjia LI,
Ping REN,
Wenquan CAO,
Qing LIU.
Effects of C Content on Microstructure and Properties ofFe-Mn-Al-C Low-Density Steels[J]. Acta Metall Sin, 2019, 55(8): 951-957.
[1] | Ha M C, Koo J M, Lee J K, et al. Tensile deformation of a low density Fe-27Mn-12Al-0.8C duplex steel in association with ordered phases at ambient temperature [J]. Mater. Sci. Eng., 2013, A586: 276 | [2] | Welsch E, Ponge D, Haghighat S M H, et al. Strain hardening by dynamic slip band refinement in a high-Mn lightweight steel [J]. Acta Mater., 2016, 116: 188 | [3] | Gutierrez-Urrutia I, Raabe D. Multistage strain hardening through dislocation substructure and twinning in a high strength and ductile weight-reduced Fe-Mn-Al-C steel [J]. Acta Mater., 2012, 60: 5791 | [4] | Yao M J, Welsch E, Ponge D, et al. Strengthening and strain hardening mechanisms in a precipitation-hardened high-Mn lightweight steel [J]. Acta Mater., 2017, 140: 258 | [5] | Yanushkevich Z, Belyakov A, Kaibyshev R, et al. Effect of cold rolling on recrystallization and tensile behavior of a high-Mn steel [J]. Mater. Charact., 2016, 112: 180 | [6] | Chen X P, Xu Y P, Ren P, et al. Aging hardening response and β-Mn transformation behavior of high carbon high manganese austenitic low-density Fe-30Mn-10Al-2C steel [J]. Mater. Sci. Eng., 2017, A703: 167 | [7] | Scott C, Allain S, Faral M, et al. The development of a new Fe-Mn-C austenitic steel for automotive applications [J]. Rev. Met. Paris, 2006, 103: 293 | [8] | Choi K, Seo C H, Lee H, et al. Effect of aging on the microstructure and deformation behavior of austenite base lightweight Fe-28Mn-9Al-0.8C steel [J]. Scr. Mater., 2010, 63: 1028 | [9] | Ren P, Chen X P, Cao Z X, et al. Synergistic strengthening effect induced ultrahigh yield strength in lightweight Fe-30Mn-11Al-1.2C steel [J]. Mater. Sci. Eng., 2019, A752: 160 | [10] | Rana R. Low-density steels [J]. JOM, 2014, 66: 1730 | [11] | Kim Y G, Han J M, Lee J S. Composition and temperature dependence of tensile properties of austenitic Fe-Mn-Al-C alloys [J]. Mater. Sci. Eng., 1989, A114: 51 | [12] | Kalashnikov I, Shalkevich A, Acselrad O, et al. Chemical composition optimization for austenitic steels of the Fe-Mn-Al-C system [J]. J. Mater. Eng. Perform., 2000, 9: 597 | [13] | Hwang C N, Chao C Y, Liu T F. Grain boundary precipitation in an Fe-8.0Al-31.5Mn-1.05C alloy [J]. Scr. Metall. Mater., 1993, 28: 263 | [14] | Gutierrez-Urrutia I, Raabe D. High strength and ductile low density austenitic FeMnAlC steels: Simplex and alloys strengthened by nanoscale ordered carbides [J]. Mater. Sci. Technol., 2014, 30: 1099 | [15] | Chen S P, Rana R, Haldar A, et al. Current state of Fe-Mn-Al-C low density steels [J]. Prog. Mater. Sci., 2017, 89: 345 | [16] | Lin C L, Chao C G, Juang J Y, et al. Deformation mechanisms in ultrahigh-strength and high-ductility nanostructured FeMnAlC alloy [J]. J. Alloys Compd., 2014, 586: 616 | [17] | Sato K, Tagawa K, Inoue Y. Spinodal decomposition and mechanical properties of an austenitic Fe-30wt.%Mn-9wt.%Al-0.9wt.%C alloy [J]. Mater. Sci. Eng., 1989, A111: 45 | [18] | Chang K M, Chao C G, Liu T F. Excellent combination of strength and ductility in an Fe-9Al-28Mn-1.8C alloy [J]. Scr. Mater., 2010, 63: 162 | [19] | Chen P C, Chao C G, Liu T F. A novel high-strength, high-ductility and high-corrosion-resistance FeAlMnC low-density alloy [J]. Scr. Mater., 2013, 68: 380 | [20] | Wang C S, Hwang C N, Chao C G, et al. Phase transitions in an Fe-9Al-30Mn-2.0C alloy [J]. Scr. Mater., 2007, 57: 809 | [21] | Chu C M, Huang H, Kao P W, et al. Effect of alloying chemistry on the lattice constant of austenitic Fe-Mn-Al-C alloys [J]. Scr. Metall. Mater., 1994, 30: 505 | [22] | Seol J B, Jung J E, Jang Y W, et al. Influence of carbon content on the microstructure, martensitic transformation and mechanical properties in austenite/ε-martensite dual-phase Fe-Mn-C steels [J]. Acta Mater., 2013, 61: 558 | [23] | Sutou Y, Kamiya N, Umino R, et al. High-strength Fe-20Mn-Al-C-based alloys with low density [J]. ISIJ Int., 2010, 50: 893 | [24] | Ding H, Han D, Zhang J, et al. Tensile deformation behavior analysis of low density Fe-18Mn-10Al-xC steels [J]. Mater. Sci. Eng., 2016, A652: 69 | [25] | Wu X L, Yang M X, Yuan F P, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility [J]. Proc. Natl. Acad. Sci. USA, 2015, 112: 14501 | [26] | Fan Z, Tsakiropoulos P, Miodownik A P. A generalized law of mixtures [J]. J. Mater. Sci., 1994, 29: 141 | [27] | Hwang S W, Ji J H, Lee E G, et al. Tensile deformation of a duplex Fe-20Mn-9Al-0.6C steel having the reduced specific weight [J]. Mater. Sci. Eng., 2011, A528: 5196 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|