Please wait a minute...
金属学报  2023, Vol. 59 Issue (5): 611-622    DOI: 10.11900/0412.1961.2022.00293
  本期目录 | 过刊浏览 |
铁素体-贝氏体双相钢韧性断裂过程中的夹杂物临界尺寸及孔洞生长
赵亚峰1,2, 刘苏杰1, 陈云1, 马会1, 马广财3, 郭翼1()
1中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
2东北大学 材料科学与工程学院 沈阳 110819
3中国科学院金属研究所 沈阳 110016
Critical Inclusion Size and Void Growth in Dual-Phase Ferrite-Bainite Steel During Ductile Fracture
ZHAO Yafeng1,2, LIU Sujie1, CHEN Yun1, MA Hui1, MA Guangcai3, GUO Yi1()
1Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
3Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

赵亚峰, 刘苏杰, 陈云, 马会, 马广财, 郭翼. 铁素体-贝氏体双相钢韧性断裂过程中的夹杂物临界尺寸及孔洞生长[J]. 金属学报, 2023, 59(5): 611-622.
Yafeng ZHAO, Sujie LIU, Yun CHEN, Hui MA, Guangcai MA, Yi GUO. Critical Inclusion Size and Void Growth in Dual-Phase Ferrite-Bainite Steel During Ductile Fracture[J]. Acta Metall Sin, 2023, 59(5): 611-622.

全文: PDF(3069 KB)   HTML
摘要: 

利用多模态关联成像方法研究了铁素体-贝氏体双相钢韧性断裂过程中局部微结构对孔洞生长的影响。首先使用X射线CT成像技术,从宏观层面量化分析了变形过程中孔洞的生长,并定位典型孔洞的空间坐标。之后对选定的目标孔洞,采用等离子体聚焦离子束(PFIB)进行连续切片三维电子背散射衍射(3D-EBSD)扫描成像,从介观层面研究孔洞周围微观组织对孔洞形核与生长的影响。结果显示,夹杂物周围和贝氏体中均有孔洞形成。尽管有时促使大尺寸孔洞生长的应变比小尺寸孔洞处的应变更小,但相比于在小尺寸夹杂物或贝氏体中形核的孔洞,大尺寸夹杂物导致的孔洞体积更大。进一步对孔洞周围的位错密度研究显示,上述现象可能是由于不同尺寸的夹杂物周围应变梯度不同造成的。孔洞周围的位错密度与诱发孔洞的夹杂物尺寸成反比,存在明显的尺寸效应,表明影响孔洞生长的夹杂物存在一个临界尺寸。利用解析理论模型推测出夹杂物临界尺寸范围为1.85~2.86 µm,小于该临界尺寸的夹杂物诱发的孔洞,由于局部变形梯度效应,位错塞积会阻碍孔洞的生长。孔洞的生长是非均匀的且其形状表现出各向异性,孔洞生长形貌与周围晶粒的可变形性相关,可用晶粒尺寸加权的Schmid因子描述。

关键词 铁素体-贝氏体双相钢孔洞形核与生长3D-EBSDXCT尺寸效应    
Abstract

Ferrite-bainite dual-phase steel is widely used in the automotive industry owing to its high strength and excellent ductility. The impact of inclusions and void growth behavior in dual-phase steel is a major concern among researchers seeking to achieve better mechanical properties. To investigate this, a cross-length-scale multimodal method was employed to study the influence of local microstructures on void growth during ductile fracture of a dual-phase ferrite-bainite steel. During tensile testing, laboratory X-ray computed tomography (XCT) was used to measure the evolution of void volume. 3D-electron back scatter diffraction (3D-EBSD) provided information about the voids nucleated at both inclusion particles and bainite phases or their boundaries. Carefully controlled, broad-focused ion beam excavation was performed to reveal a new interface at a specific depth of the voids. Results showed that voids resulting from large inclusions are significantly bigger than either small inclusions or the bainite phase. Large inclusions lead to large voids even when the strain correlated with the growth of those voids is lower. An investigation of the dislocation densities surrounding the voids suggested that they may be related to the strain gradient around the different inclusion sizes. A critical inclusion size estimated to be around 1.85-2.86 μm was found below which nucleation occurs but with limited growth. The elevated rate of local dislocation multiplication due to local deformation gradient effects can impede the growth of smaller voids. The growth of voids is heterogeneous, and their shape correlates well with the deformability of the surrounding grains, as indicated by a Schmid factor weighted using the grain size. This weighted Schmid factor explains not only the shape of the voids but also sheds light on the ease of void coalescence based on the microstructures separating the voids.

Key wordsdual-phase ferrite-bainite steel    void nucleation and growth    3D-EBSD    X-ray computed tomography    size effect
收稿日期: 2022-06-15     
ZTFLH:  TG142  
基金资助:国家自然科学基金项目(52201149);国家科技重大专项项目(J2019-VI-0019-0134);中国科学院战略性先导科技专项项目(XDC04000000);ERC CORREL-CT(695638)
作者简介: 赵亚峰,男,1993年生,博士生
图1  拉伸应力达到极限抗拉强度(UTS)后在不同工程应变(ε)水平下和断裂后的XCT二维切片图和单向拉伸应力-应变曲线
图2  图1a中2个孔洞的等效直径与样品相应截面上真实应变的关系
图3  研究孔洞生长的多模态关联表征方法
图4  图1a所示的2个孔洞及其周围晶粒的XCT三维视图,以及孔洞生长的位错环机制示意图
图5  低应变区和包含孔洞1和孔洞2的中间截面高应变区域的EBSD带对比图和Euler角着色像
图6  PFIB-SEM样本(体积约98 μm × 98 μm × 80 μm)中孔洞的尺寸和类型,以及每种类型孔洞形貌的SEM像
图7  孔洞尺寸与夹杂物尺寸的关系
图8  孔洞周围的平均几何必需位错(GND)密度与夹杂物尺寸的关系
图9  孔洞1和孔洞2的GND密度和Schmid因子,孔洞的EBSD带对比图、Schmid因子分布图、加权Schmid因子分布图和GND密度分布图
Materialμ / GPaσy / MPadσdε / MParc / µm
Low-carbon steel802952002.06
Ferrite in ferrite-bainite dual-phase steel[45]723701062.51
Bainite in ferrite-bainite dual-phase steel[45]768302580.51
Ferrite in 600 MPa ferrite-martensite dual-phase steel[46]783131602.30
Martensite in 600 MPa ferrite-martensite dual-phase steel[46]7910141670.32
Ferrite in 1000 MPa ferrite-martensite dual-phase steel[46]784431411.85
Martensite in 1000 MPa ferrite-martensite dual-phase steel[46]798132800.52
Ferrite in ferrite-martensite dual-phase steel[47]792601592.86
Martensite in ferrite-martensite dual-phase steel[47]7910004600.26
Ferrite in ferrite-martensite dual-phase steel[48]774301172.24
Martensite in ferrite-martensite dual-phase steel[48]7714504310.18
表1  不同钢种依据式(6)的夹杂物临界尺寸估算
MaterialMatrixInclusion typeCritical size of inclusion / µmRef.
SteelFerriteSilicate, TiN2-4[49]
A508 steelBainiteMnS17 × 10 × 3[50]
SAE52100MartensiteCa-Al-O, Ti(N, C)21[51]
600 MPa high-strength steelMartensiteInclusion2[52]
Ferrite-martensite dual-phase steelFerrite + martensiteInclusionCorrelated with martensite phase size[48]
High-strength steelMartensiteAl2O316[53]
High-strength steelMartensiteTiN11[53]
Bearing steelMartensiteMg-Al-O8.5[54]
Bearing steelMartensiteCalcium aluminate13.5[54]
Pipeline steelFerrite + pearliteMnS2.52-2.6[55]
SLM IN718Ni suppralloyVoid20[56]
表2  不同钢种夹杂物临界尺寸[48~56]
1 Pierman A P, Bouaziz O, Pardoen T, et al. The influence of microstructure and composition on the plastic behaviour of dual-phase steels[J]. Acta Mater., 2014, 73: 298
doi: 10.1016/j.actamat.2014.04.015
2 Tasan C C, Diehl M, Yan D, et al. An overview of dual-phase steels: Advances in microstructure-oriented processing and micromechanically guided design[J]. Annu. Rev. Mater. Res., 2015, 45: 391
doi: 10.1146/matsci.2015.45.issue-1
3 Matsuno T, Teodosiu C, Maeda D, et al. Mesoscale simulation of the early evolution of ductile fracture in dual-phase steels[J]. Int. J. Plast., 2015, 74: 17
doi: 10.1016/j.ijplas.2015.06.004
4 Toda H, Takijiri A, Azuma M, et al. Damage micromechanisms in dual-phase steel investigated with combined phase- and absorption-contrast tomography[J]. Acta Mater., 2017, 126: 401
doi: 10.1016/j.actamat.2017.01.010
5 Pineau A, Benzerga A A, Pardoen T. Failure of metals I: Brittle and ductile fracture[J]. Acta Mater., 2016, 107: 424
doi: 10.1016/j.actamat.2015.12.034
6 Goods S H, Brown L M. Overview No. 1: The nucleation of cavities by plastic deformation[J]. Acta Metall., 1979, 27: 1
doi: 10.1016/0001-6160(79)90051-8
7 Babout L, Brechet Y, Maire E, et al. On the competition between particle fracture and particle decohesion in metal matrix composites[J]. Acta Mater., 2004, 52: 4517
doi: 10.1016/j.actamat.2004.06.009
8 Achouri M, Germain G, Dal Santo P, et al. Experimental characterization and numerical modeling of micromechanical damage under different stress states[J]. Mater. Des., 2013, 50: 207
doi: 10.1016/j.matdes.2013.02.075
9 Benzerga A A, Besson J, Pineau A. Anisotropic ductile fracture: Part I: Experiments[J]. Acta Mater., 2004, 52: 4623
doi: 10.1016/j.actamat.2004.06.020
10 Liang W, Yuan Q, Chen G H, et al. Fracture evolution in ferrite/martensite dual-phase flange steel[J]. Ironmak. Steelmak., 2021, 48: 88
doi: 10.1080/03019233.2020.1733779
11 Komori K. Simulation of the influence of Lode parameter on ductile fracture using an ellipsoidal void model[J]. Int. J. Solids Struct., 2021, 229: 111143
doi: 10.1016/j.ijsolstr.2021.111143
12 Marteleur M, Leclerc J, Colla M S, et al. Ductile fracture of high strength steels with morphological anisotropy, Part I: Characterization, testing, and void nucleation law[J]. Eng. Fract. Mech., 2021, 244: 107569
doi: 10.1016/j.engfracmech.2021.107569
13 Kusche C F, Pütz F, Münstermann S, et al. On the effect of strain and triaxiality on void evolution in a heterogeneous microstructure—A statistical and single void study of damage in DP800 steel[J]. Mater. Sci. Eng., 2021, A799: 140332
14 Lubarda V A, Schneider M S, Kalantar D H, et al. Void growth by dislocation emission[J]. Acta Mater., 2004, 52: 1397
doi: 10.1016/j.actamat.2003.11.022
15 Greenwood G W, Harris J E. Note on vacancy condensation on particles[J]. Acta Metall., 1965, 13: 936
doi: 10.1016/0001-6160(65)90092-1
16 Ashby M F. Work hardening of dispersion-hardened crystals[J]. Philos. Mag., 1966, 14A: 1157
17 Bulatov V V, Wolfer W G, Kumar M. Shear impossibility: Comments on “Void growth by dislocation emission” and “Void growth in metals: Atomistic calculations”[J]. Scr. Mater., 2010, 63: 144
doi: 10.1016/j.scriptamat.2010.03.001
18 Gungor M R, Maroudas D, Zhou S J. Molecular-dynamics study of the mechanism and kinetics of void growth in ductile metallic thin films[J]. Appl. Phys. Lett., 2000, 77: 343
doi: 10.1063/1.126971
19 Segurado J, Llorca J. Discrete dislocation dynamics analysis of the effect of lattice orientation on void growth in single crystals[J]. Int. J. Plast., 2010, 26: 806
doi: 10.1016/j.ijplas.2009.10.009
20 Scheyvaerts F, Pardoen T, Onck P R. A new model for void coalescence by internal necking[J]. Int. J. Damage Mech., 2010, 19: 95
doi: 10.1177/1056789508101918
21 Weck A, Wilkinson D S, Maire E, et al. Visualization by X-ray tomography of void growth and coalescence leading to fracture in model materials[J]. Acta Mater., 2008, 56: 2919
doi: 10.1016/j.actamat.2008.02.027
22 Pardoen T, Doghri I, Delannay F. Experimental and numerical comparison of void growth models and void coalescence criteria for the prediction of ductile fracture in copper bars[J]. Acta Mater., 1998, 46: 541
doi: 10.1016/S1359-6454(97)00247-4
23 Tanaka K, Mori T, Nakamura T. Cavity formation at the interface of a spherical inclusion in a plastically deformed matrix[J]. Philos. Mag., 1970, 21A: 267
24 Gurson A L. Continuum theory of ductile rupture by void nucleation and growth: Part I—Yield criteria and flow rules for porous ductile media[J]. J. Eng. Mater. Technol., 1977, 99: 2
doi: 10.1115/1.3443401
25 Tvergaard V. Influence of voids on shear band instabilities under plane strain conditions[J]. Int. J. Fract., 1981, 17: 389
doi: 10.1007/BF00036191
26 Tvergaard V, Needleman A. Analysis of the cup-cone fracture in a round tensile bar[J]. Acta Metall., 1984, 32: 157
doi: 10.1016/0001-6160(84)90213-X
27 Burnett T L, McDonald S A, Gholinia A, et al. Correlative tomography[J]. Sci. Rep., 2014, 4: 4711
doi: 10.1038/srep04711 pmid: 24736640
28 Slater T J A, Bradley R S, Bertali G, et al. Multiscale correlative tomography: An investigation of creep cavitation in 316 stainless steel[J]. Sci. Rep., 2017, 7: 7332
doi: 10.1038/s41598-017-06976-5 pmid: 28779097
29 Daly M, Burnett T L, Pickering E J, et al. A multi-scale correlative investigation of ductile fracture[J]. Acta Mater., 2017, 130: 56
doi: 10.1016/j.actamat.2017.03.028
30 Ishikawa N, Yasuda K, Sueyoshi H, et al. Microscopic deformation and strain hardening analysis of ferrite-bainite dual-phase steels using micro-grid method[J]. Acta Mater., 2015, 97: 257
doi: 10.1016/j.actamat.2015.06.037
31 Burnett T L, Kelley R, Winiarski B, et al. Large volume serial section tomography by Xe plasma FIB dual beam microscopy[J]. Ultramicroscopy, 2016, 161: 119
doi: S0304-3991(15)30064-4 pmid: 26683814
32 Burnett T L, Winiarski B, Kelley R, et al. Xe+ plasma FIB: 3D microstructures from nanometers to hundreds of micrometers[J]. Microsc. Today, 2016, 24: 32
33 Watanabe R. Possible slip systems in body centered cubic iron[J]. Mater. Trans., 2006, 47: 1886
doi: 10.2320/matertrans.47.1886
34 Weinberger C R, Boyce B L, Battaile C C. Slip planes in bcc transition metals[J]. Int. Mater. Rev., 2013, 58: 296
doi: 10.1179/1743280412Y.0000000015
35 Nye J F. Some geometrical relations in dislocated crystals[J]. Acta Metall., 1953, 1: 153
doi: 10.1016/0001-6160(53)90054-6
36 Pantleon W. Resolving the geometrically necessary dislocation content by conventional electron backscattering diffraction[J]. Scr. Mater., 2008, 58: 994
doi: 10.1016/j.scriptamat.2008.01.050
37 Wilkinson A J, Meaden G, Dingley D J. High-resolution elastic strain measurement from electron backscatter diffraction patterns: New levels of sensitivity[J]. Ultramicroscopy, 2006, 106: 307
pmid: 16324788
38 Britton T B, Liang H, Dunne F P E, et al. The effect of crystal orientation on the indentation response of commercially pure titanium: Experiments and simulations[J]. Proc. Roy. Soc., 2010, 466A: 695
39 Britton T B, Wilkinson A J. Stress fields and geometrically necessary dislocation density distributions near the head of a blocked slip band[J]. Acta Mater., 2012, 60: 5773
doi: 10.1016/j.actamat.2012.07.004
40 Guo Y, Collins D M, Tarleton E, et al. Dislocation density distribution at slip band-grain boundary intersections[J]. Acta Mater., 2020, 182: 172
doi: 10.1016/j.actamat.2019.10.031
41 Brown L M, Stobbs W M. The work-hardening of copper-silica V. Equilibrium plastic relaxation by secondary dislocations[J]. Philos. Mag., 1976, 34A: 351
42 Traiviratana S, Bringa E M, Benson D J, et al. Void growth in metals: Atomistic calculations[J]. Acta Mater., 2008, 56: 3874
doi: 10.1016/j.actamat.2008.03.047
43 Lavrentev F F. The type of dislocation interaction as the factor determining work hardening[J]. Mater. Sci. Eng., 1980, 46: 191
doi: 10.1016/0025-5416(80)90175-5
44 Guo Y, Schwiedrzik J, Michler J, et al. On the nucleation and growth of twin in commercial purity titanium: In situ investigation of the local stress field and dislocation density distribution[J]. Acta Mater., 2016, 120: 292
doi: 10.1016/j.actamat.2016.08.073
45 Zhao Z T, Wang X S, Qiao G Y, et al. Effect of bainite morphology on deformation compatibility of mesostructure in ferrite/bainite dual-phase steel: Mesostructure-based finite element analysis[J]. Mater. Des., 2019, 180: 107870
doi: 10.1016/j.matdes.2019.107870
46 Fillafer A, Krempaszky C, Werner E. On strain partitioning and micro-damage behavior of dual-phase steels[J]. Mater. Sci. Eng., 2014, A614: 180
47 Brands D, Balzani D, Scheunemann L, et al. Computational modeling of dual-phase steels based on representative three-dimensional microstructures obtained from EBSD data[J]. Arch. Appl. Mech., 2016, 86: 575
doi: 10.1007/s00419-015-1044-1
48 Liu Y, Fan D W, Arroyave R, et al. Microstructure-based modeling of the effect of inclusion on the bendability of advanced high strength dual-phase steels[J]. Metals, 2021, 11: 431
doi: 10.3390/met11030431
49 Klevebring B I, Bogren E, Mahrs R. Determination of the critical inclusion size with respect to void formation during hot working[J]. Metall. Trans., 1975, 6A: 319
50 Ye Y G. Cavity nucleation, growth and stress field in elastic-plastic medium[J]. Acta Mech. Sol. Sin., 1990, 11: 201
50 叶裕恭. 弹塑性材料中孔洞成核、发展及应力场[J]. 固体力学学报, 1990, 11: 201
51 Bomas H, Mayr P, Linkewitz T. Inclusion size distribution and endurance limit of a hard steel[J]. Extremes, 1999, 2: 149
doi: 10.1023/A:1009918902623
52 Lee M, Kang N, Liu S, et al. Effects of inclusion size and acicular ferrite on cold cracking for high-strength steel welds of YS 600 MPa grade[J]. Sci. Technol. Weld. Joining, 2016, 21: 711
doi: 10.1080/13621718.2016.1178833
53 Wang P, Wang B, Liu Y, et al. Effects of inclusion types on the high-cycle fatigue properties of high-strength steel[J]. Scr. Mater., 2022, 206: 114232
doi: 10.1016/j.scriptamat.2021.114232
54 Gu C, Wang M, Bao Y P, et al. Quantitative analysis of inclusion engineering on the fatigue property improvement of bearing steel[J]. Metals, 2019, 9: 476
doi: 10.3390/met9040476
55 Peng Z X, Liu J, Huang F, et al. Comparative study of non-metallic inclusions on the critical size for HIC initiation and its influence on hydrogen trapping[J]. Int. J. Hydrogen Energy, 2020, 45: 12616
doi: 10.1016/j.ijhydene.2020.02.131
56 Prithivirajan V, Sangid M D. The role of defects and critical pore size analysis in the fatigue response of additively manufactured IN718 via crystal plasticity[J]. Mater. Des., 2018, 150: 139
doi: 10.1016/j.matdes.2018.04.022
57 Chen Y H, Park S U, Wei D, et al. A dictionary approach to electron backscatter diffraction indexing[J]. Microsc. Microanal., 2015, 21: 739
doi: 10.1017/S1431927615000756 pmid: 26055190
58 Singh S, Guo Y, Winiarski B, et al. High resolution low kV EBSD of heavily deformed and nanocrystalline aluminium by dictionary-based indexing[J]. Sci. Rep., 2018, 8: 10991
doi: 10.1038/s41598-018-29315-8 pmid: 30030500
59 Ashby M F, Gelles S H, Tanner L E. The stress at which dislocations are generated at a particle-matrix interface[J]. Philos. Mag., 1969, 19A: 757
60 Babout L, Maire E, Fougères R. Damage initiation in model metallic materials: X-ray tomography and modelling[J]. Acta Mater., 2004, 52: 2475
doi: 10.1016/j.actamat.2004.02.001
[1] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[2] 于少霞, 王麒, 邓想涛, 王昭东. GH3600镍基高温合金极薄带的制备及尺寸效应[J]. 金属学报, 2023, 59(10): 1365-1375.
[3] 曹庆平, 吕林波, 王晓东, 蒋建中. 物理气相沉积制备金属玻璃薄膜及其力学性能的样品尺寸效应[J]. 金属学报, 2021, 57(4): 473-490.
[4] 屈瑞涛, 王晓地, 吴少杰, 张哲峰. 金属玻璃的剪切带变形与断裂机制研究进展[J]. 金属学报, 2021, 57(4): 453-472.
[5] 王霞, 王维, 杨光, 王超, 任宇航. 激光沉积薄壁结构热力演化的尺寸效应[J]. 金属学报, 2020, 56(5): 745-752.
[6] 张广平, 陈红蕾, 罗雪梅, 张滨. 微纳米尺度金属导电材料热疲劳研究进展[J]. 金属学报, 2018, 54(3): 357-366.
[7] 马也飞, 宋竹满, 张思倩, 陈立佳, 张广平. 小尺度CA6NM马氏体不锈钢样品疲劳性能评价研究[J]. 金属学报, 2018, 54(10): 1359-1367.
[8] 杨蕊,潘艳,陈威,孙巧艳,肖林,孙军. 微尺度Ti-10V-2Fe-3Al单晶压缩变形行为及其微观机制*[J]. 金属学报, 2016, 52(2): 135-142.
[9] 孙军, 张金钰, 吴凯, 刘刚. Cu系纳米金属多层膜微柱体的形变与损伤及其尺寸效应*[J]. 金属学报, 2016, 52(10): 1249-1258.
[10] 黄晓旭. 金属强度的尺寸效应*[J]. 金属学报, 2014, 50(2): 137-140.
[11] 张金钰, 刘刚, 孙军. 纳米金属多层膜的变形与断裂行为及其尺寸效应*[J]. 金属学报, 2014, 50(2): 169-182.
[12] 张金钰 张欣 牛佳佳 刘刚 张国君 孙军. Cu/X(X=Cr, Nb)纳米多层膜力/电学性能的尺度依赖性[J]. 金属学报, 2011, 47(10): 1348-1354.
[13] 尹立孟 杨艳 刘亮岐 张新平. 电子封装微互连焊点力学行为的尺寸效应[J]. 金属学报, 2009, 45(4): 422-427.
[14] 刘志敏; 杜昊; 石南林; 闻立时 . 铝膜电导率尺寸效应对其微波性能的影响[J]. 金属学报, 2008, 44(9): 1099-1104 .
[15] 郭斌; 周健; 单德彬; 王慧敏 . 黄铜箔拉伸屈服强度的尺寸效应[J]. 金属学报, 2008, 44(4): 419-422 .