|
|
核聚变堆用W及其合金辐照损伤行为研究进展 |
吴玉程1,2,3( ) |
1. 合肥工业大学材料科学与工程学院 合肥 230009 2. 合肥工业大学有色金属与加工技术国家地方联合工程研究中心 合肥 230009 3. 太原理工大学新材料界面科学与工程教育部重点实验室 太原 030024 |
|
Research Progress in Irradiation Damage Behavior of Tungsten and Its Alloys for Nuclear Fusion Reactor |
Yucheng WU1,2,3( ) |
1. School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China 2. National-Local Joint Engineering Research Centre of Nonferrous Metals and Processing Technology, Hefei University of Technology, Hefei 230009, China 3. Key Laboratory of Interface Science and Engineering of New Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China |
引用本文:
吴玉程. 核聚变堆用W及其合金辐照损伤行为研究进展[J]. 金属学报, 2019, 55(8): 939-950.
Yucheng WU.
Research Progress in Irradiation Damage Behavior of Tungsten and Its Alloys for Nuclear Fusion Reactor[J]. Acta Metall Sin, 2019, 55(8): 939-950.
[1] | Arnoux R. Which was the first “tokamak”—or was it “tokomag”? 27 Oct. 2008, https://www.iter.org/newsline/55/1194 | [2] | Wang L. Experimental Physics of Magnetic Confinement Plasmas [M]. Beijing: Science Press, 2018: 23 | [2] | (王龙. 磁约束等离子体实验物理 [M]. 北京: 科学出版社, 2018: 23) | [3] | Ongena J, Ogawa Y. Nuclear fusion: Status report and future prospects [J]. Energy Policy, 2016, 96: 770 | [4] | Li J G. The status and progress of tokamak research [J]. Physics, 2016, 45: 88 | [4] | (李建刚. 托卡马克研究的现状及发展 [J]. 物理, 2016, 45: 88) | [5] | Pitts R A, Carpentier S, Escourbiac F, et al. Physics basis and design of the ITER plasma-facing components [J]. J. Nucl. Mater., 2011, 415: 957 | [6] | Luo L M, Shi J, Zan X, et al. Current status and development trend on alloying elements-doped plasma-facing tungsten-based materials [J]. Chin. J. Nonferrous Met., 2016, 26: 1889 | [6] | (罗来马, 施静, 昝祥等. 掺杂合金元素面向等离子体钨基材料的研究现状与发展趋势 [J]. 中国有色金属学报, 2016, 26: 1889) | [7] | Zhang S W, Wen Y, Zhang H J. Low temperature preparation of tungsten nanoparticles from molten salt [J]. Powder Technol., 2014, 253: 464 | [8] | Tokar M Z, Coenen J W, Philipps V, al et, the TEXTOR Team. Tokamak plasma response to droplet spraying from melted plasma-facing components [J]. Nucl. Fusion, 2012, 52: 013013 | [9] | Kurishita H, Kobayashi S, Nakai K, et al. Current status of ultra-fine grained W-TiC development for use in irradiation environments [J]. Phys. Scr., 2007, T128: 76 | [10] | Xu A, Beck C, Armstrong D E J, et al. Ion-irradiation-induced clustering in W-Re and W-Re-Os alloys: A comparative study using atom probe tomography and nanoindentation measurements [J]. Acta Mater., 2015, 87: 121 | [11] | El-Atwani O, Hinks J A, Greaves G, et al. In-situ TEM observation of the response of ultrafine- and nanocrystalline- grained tungsten to extreme irradiation environments [J]. Sci. Rep., 2014, 4: 4716 | [12] | Shen T D, Gao X H, Yu K Y. Progress in radiation tolerant nanomaterials [J]. J. Yanshan Univ., 2014, 38: 283 | [12] | (沈同德, 高欣海, 于开元. 抗辐照纳米材料的研究进展 [J]. 燕山大学学报, 2014, 38: 283) | [13] | Guo L P, Luo F F, Yu Y X. Dislocation Loops in Irradiated Nuclear Materials [M]. Beijing: National Defend Industry Press, 2017: 185 | [13] | (郭立平, 罗凤凤, 于雁霞. 核材料辐照位错环 [M]. 北京: 国防工业出版社, 2017: 185) | [14] | Yang Q, Fan H Y, Ni W Y, et al. Observation of interstitial loops in He+ irradiated W by conductive atomic force microscopy [J]. Acta Mater., 2015, 92: 178 | [15] | Gao L, von Toussaint U, Jacob W, et al. Suppression of hydrogen-induced blistering of tungsten by pre-irradiation at low temperature [J]. Nucl. Fusion, 2014, 54: 122003 | [16] | Zibrov M, Balden M, Morgan T W, et al. Deuterium trapping and surface modification of polycrystalline tungsten exposed to a high-flux plasma at high fluences [J]. Nucl. Fusion, 2017, 57: 046004 | [17] | Tan X Y, Luo L M, Chen H Y, et al. Mechanical properties and microstructural change of W-Y2O3 alloy under helium irradiation [J]. Sci. Rep., 2015, 5: 12755 | [18] | Baldwin M J, Doerner R P. Helium induced nanoscopic morphology on tungsten under fusion relevant plasma conditions [J]. Nucl. Fusion, 2008, 48: 035001 | [19] | You Y W, Li D D, Kong X S, et al. Clustering of H and He, and their effects on vacancy evolution in tungsten in a fusion environment [J]. Nucl. Fusion, 2014, 54: 103007 | [20] | Iwakiri H, Yasunaga K, Morishita K, et al. Microstructure evolution in tungsten during low-energy helium ion irradiation [J]. J. Nucl. Mater., 2000, 283-287: 1134 | [21] | Becquart C S, Domain C. Migration energy of He in W revisited by Ab initio calculations [J]. Phys. Rev. Lett., 2006, 97: 196402 | [22] | Yoshida N, Iwakiri H, Tokunaga K, et al. Impact of low energy helium irradiation on plasma facing metals [J]. J. Nucl. Mater., 2005, 337-339: 946 | [23] | Alimov V K, Roth J. Hydrogen isotope retention in plasma-facing materials: Review of recent experimental results [J]. Phys. Scr., 2007, T128: 6 | [24] | Valles G, Martin-Bragado I, Nordlund K, et al. Temperature dependence of underdense nanostructure formation in tungsten under helium irradiation [J]. J. Nucl. Mater., 2017, 490: 108 | [25] | Wirtz M, Berger M, Huber A, et al. Influence of helium induced nanostructures on the thermal shock performance of tungsten [J]. Nucl. Mater. Energy, 2016, 9: 177 | [26] | Tokunaga K, Fujiwara T, Ezato K, et al. Effects of helium implantation on damage during pulsed high heat loading of tungsten [J]. J. Nucl. Mater., 2007, 367-370: 812 | [27] | Hammond K D. Helium, hydrogen, and fuzz in plasma-facing materials [J]. Mater. Res. Express, 2017, 4: 104002 | [28] | Liu L, Liu D P, Hong Y, et al. High-flux He+ irradiation effects on surface damages of tungsten under ITER relevant conditions [J]. J. Nucl. Mater., 2016, 471: 1 | [29] | Ito A M, Takayama A, Oda Y, et al. Molecular dynamics and Monte Carlo hybrid simulation for fuzzy tungsten nanostructure formation [J]. Nucl. Fusion, 2015, 55: 073013 | [30] | Yi X O, Arakawa K, Nguyen-Manh D, et al. A study of helium bubble production in 10 keV He+ irradiated tungsten [J]. Fusion Eng. Des., 2017, 125: 454 | [31] | Gonderman S, Tripathi J K, Novakowski T J, et al. The effect of low energy helium ion irradiation on tungsten-tantalum (W-Ta) alloys under fusion relevant conditions [J]. J. Nucl. Mater., 2017, 491: 199 | [32] | Takamura S, Ohno N, Nishijima D, et al. Formation of nanostructured tungsten with arborescent shape due to helium plasma irradiation [J]. Plasma Fusion Res., 2006, 1: 051 | [33] | Baldwin M J, Doerner R P. Formation of helium induced nanostructure 'fuzz' on various tungsten grades [J]. J. Nucl. Mater., 2010, 404: 165 | [34] | Lin J S, Luo L M, Xu Q, et al. Microstructure and deuterium retention after ion irradiation of W-Lu2O3 composites [J]. J. Nucl. Mater., 2017, 490: 272 | [35] | Kurishita H, Kobayashi S, Nakai K, et al. Development of ultra-fine grained W-(0.25—0.8)wt%TiC and its superior resistance to neutron and 3 MeV He-ion irradiations [J]. J. Nucl. Mater., 2008, 377: 34 | [36] | Xu Q, Ding X Y, Luo L M, et al. Thermal stability and evolution of microstructures induced by He irradiation in W-TiC alloys [J]. Nucl. Mater. Energy, 2018, 15: 76 | [37] | Khan A, De Temmerman G, Morgan T W, et al. Effect of rhenium addition on tungsten fuzz formation in helium plasmas [J]. J. Nucl. Mater., 2016, 474: 99 | [38] | Roth J, Schmid K. Hydrogen in tungsten as plasma-facing material [J]. Phys. Scr., 2011, T145: 014031 | [39] | Henriksson K O E, Nordlund K, Krasheninnikov A, et al. Difference in formation of hydrogen and helium clusters in tungsten [J]. Appl. Phys. Lett., 2005, 87: 163113 | [40] | Heinola K, Ahlgren T, Nordlund K, et al. Hydrogen interaction with point defects in tungsten [J]. Phys. Rev., 2010, 82B: 094102 | [41] | Johnson D F, Carter E A. Hydrogen in tungsten: Absorption, diffusion, vacancy trapping, and decohesion [J]. J. Mater. Res., 2010, 25: 315 | [42] | You Y W, Kong X S, Wu X B, et al. Dissolving, trapping and detrapping mechanisms of hydrogen in bcc and fcc transition metals [J]. AIP Adv., 2013, 3: 012118 | [43] | Guerrero C, González C, Iglesias R, et al. First principles study of the behavior of hydrogen atoms in a W monovacancy [J]. J. Mater. Sci., 2016, 51: 1445 | [44] | Ohsawa K, Eguchi K, Watanabe H, et al. Configuration and binding energy of multiple hydrogen atoms trapped in monovacancy in bcc transition metals [J]. Phys. Rev., 2012, 85B: 094102 | [45] | Liu Y L, Zhang Y, Zhou H B, et al. Vacancy trapping mechanism for hydrogen bubble formation in metal [J]. Phys. Rev., 2009, 79B: 172103 | [46] | Zhou H B, Liu Y L, Jin S, et al. Investigating behaviours of hydrogen in a tungsten grain boundary by first principles: From dissolution and diffusion to a trapping mechanism [J]. Nucl. Fusion, 2010, 50: 025016 | [47] | Hu W H, Luo F F, Shen Z Y, et al. Hydrogen bubble formation and evolution in tungsten under different hydrogen irradiation conditions [J]. Fusion Eng. Des., 2015, 90: 23 | [48] | Huber A, Sergienko G, Wirtz M, et al. Deuterium retention in tungsten under combined high cycle ELM-like heat loads and steady-state plasma exposure [J]. Nucl. Mater. Energy, 2016, 9: 157 | [49] | Wang W M, Roth J, Lindig S, et al. Blister formation of tungsten due to ion bombardment [J]. J. Nucl. Mater., 2001, 299: 124 | [50] | Alimov V K, Hatano Y, Sugiyama K, et al. Surface morphology and deuterium retention in tungsten and tungsten-rhenium alloy exposed to low-energy, high flux D plasma [J]. J. Nucl. Mater., 2014, 454: 136 | [51] | Chen H Y, Luo L M, Chen J B, et al. Effects of zirconium element on the microstructure and deuterium retention of W-Zr/Sc2O3 composites [J]. Sci. Rep., 2016, 6: 32678 | [52] | Taylor C N, Shimada M, Merrill B J. Deuterium retention and blistering in tungsten foils [J]. Nucl. Mater. Energy, 2017, 12: 689 | [53] | Haasz A A, Poon M, Davis J W, et al. The effect of ion damage on deuterium trapping in tungsten [J]. J. Nucl. Mater., 1999, 266-269: 520 | [54] | Ogorodnikova O V. Fundamental aspects of deuterium retention in tungsten at high flux plasma exposure [J]. J. Appl. Phys., 2015, 118: 074902 | [55] | Ogorodnikova O V, Markelj S, von Toussaint U. Interaction of atomic and low-energy deuterium with tungsten pre-irradiated with self-ions [J]. J. Appl. Phys., 2016, 119: 054901 | [56] | Iwakiri H, Morishita K, Yoshida N. Effects of helium bombardment on the deuterium behavior in tungsten [J]. J. Nucl. Mater., 2002, 307-311: 135 | [57] | Nishijima D, Sugimoto T, Iwakiri H, et al. Characteristic changes of deuterium retention on tungsten surfaces due to low-energy helium plasma pre-exposure [J]. J. Nucl. Mater., 2005, 337-339: 927 | [58] | Sakoi Y, Miyamoto M, Ono K, et al. Helium irradiation effects on deuterium retention in tungsten [J]. J. Nucl. Mater., 2013, 442: S715 | [59] | Liu X, Ma J M, Guo H B. Neutron irradiation damage for first wall materials in hybrid reactor [J]. High Power Laser Part. Beams, 2015, 27(1): 016010 | [59] | ((刘 晓, 马纪敏, 郭海兵. 混合堆第一壁中子辐照损伤模拟 [J]. 强激光与粒子束, 2015, 27(1): 016010) | [60] | Williams R K, Wiffen F W, Bentley J, et al. Irradiation induced precipitation in tungsten based, W-Re alloys [J]. Metall. Trans., 1983, 14A: 655 | [61] | Fukuda M, Yabuuchi K, Nogami S, et al. Microstructural development of tungsten and tungsten-rhenium alloys due to neutron irradiation in HFIR [J]. J. Nucl. Mater., 2014, 455: 460 | [62] | Tanno T, Hasegawa A, He J C, et al. Effects of transmutation elements on neutron irradiation hardening of tungsten [J]. Mater. Trans., 2007, 48: 2399 | [63] | Gilbert M R, Sublet J C. Neutron-induced transmutation effects in W and W-alloys in a fusion environment [J]. Nucl. Fusion, 2011, 51: 043005 | [64] | Marian J, Becquart C S, Domain C, et al. Recent advances in modeling and simulation of the exposure and response of tungsten to fusion energy conditions [J]. Nucl. Fusion, 2017, 57: 092008 | [65] | Hasegawa A, Fukuda M, Yabuuchi K, et al. Neutron irradiation effects on the microstructural development of tungsten and tungsten alloys [J]. J. Nucl. Mater., 2016, 471: 175 | [66] | Xu A, Armstrong D E J, Beck C, et al. Ion-irradiation induced clustering in W-Re-Ta, W-Re and W-Ta alloys: An atom probe tomography and nanoindentation study [J]. Acta Mater., 2017, 124: 71 | [67] | Hu X X, Koyanagi T, Fukuda M, et al. Irradiation hardening of pure tungsten exposed to neutron irradiation [J]. J. Nucl. Mater., 2016, 480: 235 | [68] | Fukuda M, Kumar N A P K, Koyanagi T, et al. Neutron energy spectrum influence on irradiation hardening and microstructural development of tungsten [J]. J. Nucl. Mater., 2016, 479: 249 | [69] | Tanno T, Fukuda M, Nogami S, et al. Microstructure development in neutron irradiated tungsten alloys [J]. Mater. Trans., 2011, 52: 1447 | [70] | Liu C S, Wu X B, Yu Y W, et al. First-principles study of hydrogen and helium behaviors of plasma-facing tungsten in nuclear fusion reactors [J]. J. Anhui Normal Univ. (Nat. Sci.), 2016, 39: 307 | [70] | (刘长松, 吴学邦, 尤玉伟等. 核聚变堆面向等离子体钨基材料氢氦效应的第一性原理研究 [J]. 安徽师范大学学报(自然科学版), 2016, 39: 307) | [71] | Shimada M, Hatano Y, Calderoni P, et al. First result of deuterium retention in neutron-irradiated tungsten exposed to high flux plasma in TPE [J]. J. Nucl. Mater., 2011, 415: S667 | [72] | Yi X O, Jenkins M L, Kirk M A, et al. In-situ TEM studies of 150 keV W+ ion irradiated W and W-alloys: Damage production and microstructural evolution [J]. Acta Mater., 2016, 112: 105 | [73] | Hasenhuetl E, Zhang Z X, Yabuuchi K, et al. Effect of displacement damage level on the ion-irradiation affected zone evolution in W single crystals [J]. J. Nucl. Mater., 2017, 495: 314 | [74] | Yi X O, Jenkins M L, Hattar K, et al. Characterisation of radiation damage in W and W-based alloys from 2 MeV self-ion near-bulk implantations [J]. Acta Mater., 2015, 92: 163 | [75] | Luo L M, Xu M Y, Zan X, et al. Progress in irradiation damage of tungsten and tungsten alloys under different irradiation particles [J]. Mater. Rev., 2018, 32: 41 | [75] | (罗来马, 徐梦瑶, 昝祥等. 不同辐照粒子下钨及钨合金辐照损伤行为的研究进展 [J]. 材料导报, 2018, 32: 41) | [76] | Seeger A, Schumacher D, Schilling W, et al. Vacancies and Interstitials in Metals [M]. Amsterdam: North Holland Publishing Co, 1970: 1 | [77] | Kong F H, Qu M, Yan S, et al. Influence of Au ions irradiation damage on helium implanted tungsten [J]. Nucl. Instrum. Methods Phys. Res., 2017, 409B: 192 | [78] | Wang H W, Gao Y, Fu E G, et al. Effect of high fluence Au ion irradiation on nanocrystalline tungsten film [J]. J. Nucl. Mater., 2013, 442: 189 | [79] | Tynan G R, Doerner R P, Barton J, et al. Deuterium retention and thermal conductivity in ion-beam displacement-damaged tungsten [J]. Nucl. Mater. Energy, 2017, 12: 164 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|