Please wait a minute...
金属学报  2019, Vol. 55 Issue (8): 951-957    DOI: 10.11900/0412.1961.2019.00014
  本期目录 | 过刊浏览 |
1. 重庆大学材料科学与工程学院 重庆 400044
2. 钢铁研究总院特殊钢研究所 北京 100081
Effects of C Content on Microstructure and Properties ofFe-Mn-Al-C Low-Density Steels
Xingpin CHEN1(),Wenjia LI1,Ping REN1,Wenquan CAO2,Qing LIU1
1. College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
2. Special Steel Department of Central Iron & Steel Research Institute, Beijing 100081, China
全文: PDF(12111 KB)   HTML

采用EBSD、TEM、XRD和万能试验机等对比研究了4种Fe-30Mn-10Al-xC (x=0.53、0.72、1.21、1.68,质量分数,%)低密度钢固溶处理后的微观组织与力学性能。结果表明,随着C含量的增加,奥氏体的体积分数逐渐增多,显微结构由铁素体/奥氏体双相组织逐渐演变为单相奥氏体组织,钢的强度不断增加,而延伸率则先增加后减小。统计分析表明,奥氏体的应变协调能力高于铁素体,双相钢随着奥氏体含量的增加,延展性明显增加,强度略微增加;而对于单相奥氏体钢,随着C含量的增加,屈服强度明显增加,延展性变差,加工硬化能力显著降低,这是由于钢中κ′碳化物的析出造成的。

关键词 低密度钢Fe-Mn-Al-C合金力学性能奥氏体铁素体    

The lightweight Fe-Mn-Al-C steels (so-called low-density steels) have received great attentions as promising candidate for automobile structure applications due to their excellent combination of density reduction, mechanical properties and corrosion resistance. In previous studies, most examinations of the Fe-Mn-Al-C alloys focused on the deformation mechanisms and the relationship between the microstructure and mechanical properties. It is well known that chemical composition, especially C content, which enhances strength as the interstitial element and reduces the density of steels, plays an important role in the control of microstructure and performance. However, the influence of C element in the alloy with high Mn content is barely studied. In this work, the effects of C content on microstructure and mechanical properties of four Fe-30Mn-10Al-xC (x=0.53, 0.72, 1.21, 1.68, mass fraction, %) alloys were studied by EBSD, TEM, XRD and universal testing machine. The results show that with the increase of C content, the amount of austenite gradually increases and the ferrite/austenite dual-phase microstructure transforms into single phase austenite. In addition, the strength increases monotonously, while the elongation increases and then decreases ultimately with increasing C content. Statistical analysis reveals that the strain coordination capacity of austenite is higher than that of ferrite. Therefore, with the increase of austenite content, the ductility of the dual-phase steel remarkably increases, while the strength increases slightly. For single austenite steels, the yield strength increases but the elongation and work hardening ability decrease with increasing C content, which is related to the precipitation of κ′ carbides.

Key wordslow-density steel    Fe-Mn-Al-C alloy    mechanical property    austenite    ferrite
收稿日期: 2019-01-17     
ZTFLH:  TG142.1  
基金资助:国家自然科学基金项目((Nos.51871062 and 51421001));中央高校基本科研业务费专项资金项目(No.2018CDJDCL0019)
通讯作者: 陈兴品     E-mail:
Corresponding author: Xingpin CHEN     E-mail:
作者简介: 陈兴品,男,1970年生,教授,博士


陈兴品,李文佳,任平,曹文全,刘庆. C含量对Fe-Mn-Al-C低密度钢组织和性能的影响[J]. 金属学报, 2019, 55(8): 951-957.
Xingpin CHEN, Wenjia LI, Ping REN, Wenquan CAO, Qing LIU. Effects of C Content on Microstructure and Properties ofFe-Mn-Al-C Low-Density Steels. Acta Metall Sin, 2019, 55(8): 951-957.

链接本文:      或

图1  不同C含量实验用钢的EBSD图

C content


γ phase


α phase


Grain size


表1  实验用钢的相含量与晶粒尺寸
图2  含C量为1.68%的实验用钢的TEM像及选区电子衍射花样
图3  不同C含量实验用钢的XRD谱

C content




Lattice parameter


表2  4种C含量实验用钢的XRD实验数据
图4  不同C含量实验用钢的拉伸曲线及力学性能
图5  含C量为0.53%的实验用钢中奥氏体与铁素体两相变形前后的EBSD图
图6  含C量为0.53%的钢变形前后单个晶粒真应变的分布图
[1] Ha M C, Koo J M, Lee J K, et al. Tensile deformation of a low density Fe-27Mn-12Al-0.8C duplex steel in association with ordered phases at ambient temperature [J]. Mater. Sci. Eng., 2013, A586: 276
[2] Welsch E, Ponge D, Haghighat S M H, et al. Strain hardening by dynamic slip band refinement in a high-Mn lightweight steel [J]. Acta Mater., 2016, 116: 188
[3] Gutierrez-Urrutia I, Raabe D. Multistage strain hardening through dislocation substructure and twinning in a high strength and ductile weight-reduced Fe-Mn-Al-C steel [J]. Acta Mater., 2012, 60: 5791
[4] Yao M J, Welsch E, Ponge D, et al. Strengthening and strain hardening mechanisms in a precipitation-hardened high-Mn lightweight steel [J]. Acta Mater., 2017, 140: 258
[5] Yanushkevich Z, Belyakov A, Kaibyshev R, et al. Effect of cold rolling on recrystallization and tensile behavior of a high-Mn steel [J]. Mater. Charact., 2016, 112: 180
[6] Chen X P, Xu Y P, Ren P, et al. Aging hardening response and β-Mn transformation behavior of high carbon high manganese austenitic low-density Fe-30Mn-10Al-2C steel [J]. Mater. Sci. Eng., 2017, A703: 167
[7] Scott C, Allain S, Faral M, et al. The development of a new Fe-Mn-C austenitic steel for automotive applications [J]. Rev. Met. Paris, 2006, 103: 293
[8] Choi K, Seo C H, Lee H, et al. Effect of aging on the microstructure and deformation behavior of austenite base lightweight Fe-28Mn-9Al-0.8C steel [J]. Scr. Mater., 2010, 63: 1028
[9] Ren P, Chen X P, Cao Z X, et al. Synergistic strengthening effect induced ultrahigh yield strength in lightweight Fe-30Mn-11Al-1.2C steel [J]. Mater. Sci. Eng., 2019, A752: 160
[10] Rana R. Low-density steels [J]. JOM, 2014, 66: 1730
[11] Kim Y G, Han J M, Lee J S. Composition and temperature dependence of tensile properties of austenitic Fe-Mn-Al-C alloys [J]. Mater. Sci. Eng., 1989, A114: 51
[12] Kalashnikov I, Shalkevich A, Acselrad O, et al. Chemical composition optimization for austenitic steels of the Fe-Mn-Al-C system [J]. J. Mater. Eng. Perform., 2000, 9: 597
[13] Hwang C N, Chao C Y, Liu T F. Grain boundary precipitation in an Fe-8.0Al-31.5Mn-1.05C alloy [J]. Scr. Metall. Mater., 1993, 28: 263
[14] Gutierrez-Urrutia I, Raabe D. High strength and ductile low density austenitic FeMnAlC steels: Simplex and alloys strengthened by nanoscale ordered carbides [J]. Mater. Sci. Technol., 2014, 30: 1099
[15] Chen S P, Rana R, Haldar A, et al. Current state of Fe-Mn-Al-C low density steels [J]. Prog. Mater. Sci., 2017, 89: 345
[16] Lin C L, Chao C G, Juang J Y, et al. Deformation mechanisms in ultrahigh-strength and high-ductility nanostructured FeMnAlC alloy [J]. J. Alloys Compd., 2014, 586: 616
[17] Sato K, Tagawa K, Inoue Y. Spinodal decomposition and mechanical properties of an austenitic Fe-30wt.%Mn-9wt.%Al-0.9wt.%C alloy [J]. Mater. Sci. Eng., 1989, A111: 45
[18] Chang K M, Chao C G, Liu T F. Excellent combination of strength and ductility in an Fe-9Al-28Mn-1.8C alloy [J]. Scr. Mater., 2010, 63: 162
[19] Chen P C, Chao C G, Liu T F. A novel high-strength, high-ductility and high-corrosion-resistance FeAlMnC low-density alloy [J]. Scr. Mater., 2013, 68: 380
[20] Wang C S, Hwang C N, Chao C G, et al. Phase transitions in an Fe-9Al-30Mn-2.0C alloy [J]. Scr. Mater., 2007, 57: 809
[21] Chu C M, Huang H, Kao P W, et al. Effect of alloying chemistry on the lattice constant of austenitic Fe-Mn-Al-C alloys [J]. Scr. Metall. Mater., 1994, 30: 505
[22] Seol J B, Jung J E, Jang Y W, et al. Influence of carbon content on the microstructure, martensitic transformation and mechanical properties in austenite/ε-martensite dual-phase Fe-Mn-C steels [J]. Acta Mater., 2013, 61: 558
[23] Sutou Y, Kamiya N, Umino R, et al. High-strength Fe-20Mn-Al-C-based alloys with low density [J]. ISIJ Int., 2010, 50: 893
[24] Ding H, Han D, Zhang J, et al. Tensile deformation behavior analysis of low density Fe-18Mn-10Al-xC steels [J]. Mater. Sci. Eng., 2016, A652: 69
[25] Wu X L, Yang M X, Yuan F P, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility [J]. Proc. Natl. Acad. Sci. USA, 2015, 112: 14501
[26] Fan Z, Tsakiropoulos P, Miodownik A P. A generalized law of mixtures [J]. J. Mater. Sci., 1994, 29: 141
[27] Hwang S W, Ji J H, Lee E G, et al. Tensile deformation of a duplex Fe-20Mn-9Al-0.6C steel having the reduced specific weight [J]. Mater. Sci. Eng., 2011, A528: 5196
[1] 陈文雄, 胡宝佳, 贾春妮, 郑成武, 李殿中. 热变形后Ni-30%Fe模型合金中奥氏体的亚动态软化行为[J]. 金属学报, 2020, 56(6): 874-884.
[2] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[3] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[4] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[5] 姚小飞, 魏敬鹏, 吕煜坤, 李田野. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56(5): 769-775.
[6] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[7] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[8] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[9] 徐伟,黄明浩,王金亮,沈春光,张天宇,王晨充. 综述:钢中亚稳奥氏体组织与疲劳性能关系[J]. 金属学报, 2020, 56(4): 459-475.
[10] 罗海文,沈国慧. 超高强高韧化钢的研究进展和展望[J]. 金属学报, 2020, 56(4): 494-512.
[11] 王存宇,常颖,周峰峦,曹文全,董瀚,翁宇庆. 高强度高塑性第三代汽车钢的M3组织调控理论与技术[J]. 金属学报, 2020, 56(4): 400-410.
[12] 彭云,宋亮,赵琳,马成勇,赵海燕,田志凌. 先进钢铁材料焊接性研究进展[J]. 金属学报, 2020, 56(4): 601-618.
[13] 刘振宝,梁剑雄,苏杰,王晓辉,孙永庆,王长军,杨志勇. 高强度不锈钢的研究及发展现状[J]. 金属学报, 2020, 56(4): 549-557.
[14] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[15] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.