|
|
合金凝固枝晶粗化的研究进展 |
朱鸣芳1( ), 邢丽科1, 方辉1, 张庆宇1, 汤倩玉1, 潘诗琰1,2 |
1 东南大学江苏省先进金属材料高技术研究重点实验室 南京 211189 2 南京理工大学材料科学与工程学院 南京 210094 |
|
Progresses in Dendrite Coarsening During Solidification of Alloys |
Mingfang ZHU1( ), Like XING1, Hui FANG1, Qingyu ZHANG1, Qianyu TANG1, Shiyan PAN1,2 |
1 Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing 211189, China 2 School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China |
引用本文:
朱鸣芳, 邢丽科, 方辉, 张庆宇, 汤倩玉, 潘诗琰. 合金凝固枝晶粗化的研究进展[J]. 金属学报, 2018, 54(5): 789-800.
Mingfang ZHU,
Like XING,
Hui FANG,
Qingyu ZHANG,
Qianyu TANG,
Shiyan PAN.
Progresses in Dendrite Coarsening During Solidification of Alloys[J]. Acta Metall Sin, 2018, 54(5): 789-800.
[1] | Marsh S P, Glicksman M E.Overview of geometric effects on coarsening of mushy zones[J]. Metall. Mater. Trans., 1996, 27A: 557 | [2] | Huang S C, Glicksman M E.Overview 12: Fundamentals of dendritic solidification-II development of sidebranch structure[J]. Acta Mater., 1981, 29: 717 | [3] | Rowenhorst D J, Voorhees P W.Measurement of interfacial evolution in three dimensions[J]. Annu. Rev. Mater. Res., 2012, 42: 105 | [4] | Flemings M C, Kattamis T Z, Bardes B P.Dendrite arm spacing in aluminum alloys[J]. Trans. Am. Foundry Soc., 1991, 89: 501 | [5] | Rettenmayr M.Melting and remelting phenomena[J]. Int. Mater. Rev., 2009, 54: 1 | [6] | Lifshitz I M, Slyozov V V.The kinetics of precipitation from supersaturated solid solutions[J]. J. Phys. Chem. Solids, 1961, 19: 35 | [7] | Wagner C.Theorie der alterung von niederschl?gen durch uml?sen (ostwald-reifung)[J]. Z. Elektrochem., 1961, 65: 581 | [8] | Ratke L, Voorhees P W.Growth and Coarsening: Ostwald Ripening in Material Processing[M]. Heidelberg: Springer-Verlag, 2002: 118 | [9] | Kirkwood D H.A simple model for dendrite arm coarsening during solidification[J]. Mater. Sci. Eng., 1985, 73: L1 | [10] | Mortensen A.On the influence of coarsening on microsegregation[J]. Metall. Trans., 1989, 20A: 247 | [11] | Mortensen A.On the rate of dendrite arm coarsening[J]. Metall. Trans., 1991, 22A: 569 | [12] | Chen M, Kattamis T Z.Dendrite coarsening during directional solidification of Al-Cu-Mn alloys[J]. Mater. Sci. Eng., 1998, A247: 239 | [13] | Kattamis T Z, Coughlin I C, Flemings M C.Influence of coarsening on dendrite arm spacing of aluminum-copper alloys[J]. Trans. Metall. Soc. AIME, 1967, 239: 1504 | [14] | Reeves J J, Kattamis T Z.A model for isothermal dendritic coarsening[J]. Scr. Metall., 1971, 5: 223 | [15] | Whisler N J, Kattamis T Z.Dendritic coarsening during solidification[J]. J. Cryst. Growth, 1972, 15: 20 | [16] | Peterson P W, Kattamis T Z, Giamei A F.Coarsening kinetics during solidification of Ni-Al-Ta dendritic monocrystals[J]. Metall. Trans., 1980, 11A: 1059 | [17] | Pilling J, Hellawell A.Mechanical deformation of dendrites by fluid flow[J]. Metall. Mater. Trans., 1996: 27A: 229 | [18] | Terzi S, Salvo L, Suery M, et al.Coarsening mechanisms in a dendritic Al-10% Cu alloy[J]. Acta Mater., 2010, 58: 20 | [19] | DeHoff R T. A geometrically general theory of diffusion controlled coarsening[J]. Acta Metall. Mater., 1991, 39: 2349 | [20] | Han Q Y, Hu H Q, Zhong X Y.The mathematical models for secondary dendrite arm isothermal coarsening[J]. Mater. Sci. Prog., 1987, 1(4): 33(韩青有, 胡汉起, 钟雪友. 二次枝晶臂等温粗化数学模型[J]. 材料科学进展, 1987, 1(4): 33) | [21] | Kirkwood D H.Microsegregation[J]. Mater. Sci. Eng., 1984, 65: 101 | [22] | Dutta B, Rettenmayr M.Effect of cooling rate on the solidification behaviour of Al-Fe-Si alloys[J]. Mater. Sci. Eng., 2000, A283: 218 | [23] | Young K P, Kerkwood D H.The dendrite arm spacings of aluminum-copper alloys solidified under steady-state conditions[J]. Metall. Trans., 1975, 6A: 197 | [24] | Gu G D, An G Y.Secondary dendrite arm spacing and coarsening mechanism for Al-Cu-Ce alloys[J]. Foundry, 1990, (10): 32(顾根大, 安阁英. Al-Cu-Ce合金的二次枝晶间距和粗化机理[J]. 铸造, 1990, (10): 32) | [25] | Poirier D R, Ganesan S, Andrews M, et al.Isothermal coarsening of dendritic equiaxial grains in Al-15.6wt.%Cu alloy[J]. Mater. Sci. Eng., 1991, A148: 289 | [26] | Alkemper J, Voorhees P W.Three-dimensional characterization of dendritic microstructures[J]. Acta Mater., 2001, 49: 897 | [27] | Mendoza R, Alkemper J, Voorhees P W.The morphological evolution of dendritic microstructures during coarsening[J]. Metall. Mater. Trans., 2003, 34A: 481 | [28] | Mendoza R, Savin I, Thornton K, et al.Topological complexity and the dynamics of coarsening[J]. Nat. Mater., 2004, 3: 385 | [29] | Kammer D, Voorhees P W.The morphological evolution of dendritic microstructures during coarsening[J]. Acta Mater., 2006, 54: 1549 | [30] | Mendoza R, Thornton K, Savin I, et al.The evolution of interfacial topology during coarsening[J]. Acta Mater., 2006, 54: 743 | [31] | Kwon Y, Thornton K, Voorhees P W.Coarsening of bicontinuous structures via nonconserved and conserved dynamics[J]. Phys. Rev., 2007, 75E: 021120 | [32] | Fife J L, Voorhees P W.Self-similar microstructural evolution of dendritic solid-liquid mixtures during coarsening[J]. Scr. Mater., 2009, 60: 839 | [33] | Fife J L, Voorhees P W.The morphological evolution of equiaxed dendritic microstructures during coarsening[J]. Acta Mater., 2009, 57: 2418 | [34] | Cool T, Voorhees P W.The evolution of dendrites during coarsening: Fragmentation and morphology[J]. Acta Mater., 2017, 127: 359 | [35] | Jackson K A, Hunt J D, Uhlmann D R, et al.On the origin of the equiaxed zone in castings[J]. Trans. Metall. Soc. AIME, 1966, 236: 149 | [36] | Li B, Brody H D, Kazimirov A.Real-time observation of dendrite coarsening in Sn-13%Bi alloy by synchrotron microradiography[J]. Phys. Rev., 2004, 70E: 062602 | [37] | Li B, Brody H D, Kazimirov A.Real time synchrotron microradiography of dendrite coarsening in Sn-13wt pct Bi alloy[J]. Metall. Mater. Trans., 2007, 38A: 599 | [38] | Limodin N, Salvo L, Suéry M, et al.In situ investigation by X-ray tomography of the overall and local microstructural changes occurring during partial remelting of an Al-15.8wt.% Cu alloy[J]. Acta Mater., 2007, 55: 3177 | [39] | Limodin N, Salvo L, Boller E, et al.In situ and real-time 3-D microtomography investigation of dendritic solidification in an Al-10 wt.% Cu alloy[J]. Acta Mater., 2009, 57: 2300 | [40] | Xu J J, Wang T M, Zhu J, et al.In situ study on secondary dendrite arm coarsening of Sn-Bi alloy by synchrotron microradiography[J]. Mater. Res. Innov., 2011, 15: 156 | [41] | Fife J L, Gibbs J W, Gulsoy E B, et al.The dynamics of interfaces during coarsening in solid-liquid systems[J]. Acta Mater., 2014, 70: 66 | [42] | Mirihanage W U, Falch K V, Snigireva I, et al.Retrieval of three-dimensional spatial information from fast in situ two-dimensional synchrotron radiography of solidification microstructure evolution[J]. Acta Mater., 2014, 81: 241 | [43] | Shuai S S, Guo E Y, Phillion A B, et al.Fast synchrotron X-ray tomographic quantification of dendrite evolution during the solidification of Mg-Sn alloys[J]. Acta Mater., 2016, 118: 260 | [44] | Guo E Y, Phillion A B, Cai B, et al.Dendritic evolution during coarsening of Mg-Zn alloys via 4D synchrotron tomography[J]. Acta Mater., 2016, 123: 373 | [45] | Mathiesen R H, Arnberg L, Bleuet P, et al.Crystal fragmentation and columnar-to-equiaxed transitions in Al-Cu studied by synchrotron X-ray video microscopy[J]. Metall. Mater. Trans., 2006, 37A: 2515 | [46] | Galenko P K, Phanikumar G, Funke O, et al. Dendritic solidification and fragmentation in undercooled Ni-Zr alloys [J]. Mater. Sci. Eng., 2007, A449-451: 649 | [47] | Ruvalcaba D, Mathiesen R H, Eskin D G, et al.In situ observations of dendritic fragmentation due to local solute-enrichment during directional solidification of an aluminum alloy[J]. Acta Mater., 2007, 55: 4287 | [48] | Wang T M, Xu J J, Li J, et al.In situ study on dendrite growth of metallic alloy by a synchrotron radiation imaging technology[J]. Sci. China: Tech. Sci., 2010, 53: 1278 | [49] | Peng P, Li X Z, Li J G, et al.Detachment of secondary dendrite arm in a directionally solidified Sn-Ni peritectic alloy under deceleration growth condition[J]. Sci. Rep., 2016, 6: 27682 | [50] | Akamatsu S, Nguyen-Thi H.In situ observation of solidification patterns in diffusive conditions[J]. Acta Mater., 2016, 108: 325 | [51] | Li X, Gagnoud A, Fautrelle Y, et al.Dendrite fragmentation and columnar-to-equiaxed transition during directional solidification at lower growth speed under a strong magnetic field[J]. Acta Mater., 2012, 60: 3321 | [52] | Liotti E, Lui A, Vincent R, et al.A synchrotron X-ray radiography study of dendrite fragmentation induced by a pulsed electromagnetic field in an Al-15Cu alloy[J]. Acta Mater., 2014, 70: 228 | [53] | Bi C, Guo Z P, Liotti E, et al.Quantification study on dendrite fragmentation in solidification process of alluminum alloys[J]. Acta Metall. Sin., 2015, 51: 677(毕成, 郭志鹏, Liotti E等. 铝合金凝固过程枝晶破碎现象的定量化研究[J]. 金属学报, 2015, 51: 677) | [54] | Liotti E, Lui A, Kumar S, et al.The spatial and temporal distribution of dendrite fragmentation in solidifying Al-Cu alloys under different conditions[J]. Acta Mater., 2016, 121: 384 | [55] | Ogilvy A J W, Kirkwood D H. A model for the numerical computation of microsegregation in alloys[J]. Appl. Scient. Res., 1987, 44: 43 | [56] | Neumann-Heyme H, Eckert K, Beckermann C.Dendrite fragmentation in alloy solidification due to sidearm pinch-off[J]. Phys. Rev., 2015, 92E: 060401 | [57] | Warren J A, Boettinger W J.Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method[J]. Acta Metall. Mater., 1995, 43: 689 | [58] | Wang J C, Yang G C.Phase-field modeling of isothermal dendritic coarsening in ternary alloys[J]. Acta Mater., 2008, 56: 4585 | [59] | Chen Y, Kang X H, Li D Z.Phase-field modeling of free dendritic growth with adaptive finite element method[J]. Acta Phys. Sin., 2009, 58: 390(陈云, 康秀红, 李殿中. 自由枝晶生长相场模型的自适应有限元法模拟[J]. 物理学报, 2009, 58: 390) | [60] | Hu C Q, Zhang Y T, Li D H, et al.Simulation of dendrite growth and coarsening during isothermal solidification process by phase field method[J]. J. Shenyang Ligong Univ., 2010, 29(4): 51(胡春青, 张玉妥, 李东辉等. 等温凝固过程中枝晶生长与枝晶熟化的相场法模拟[J]. 沈阳理工大学学报, 2010, 29(4): 51) | [61] | Aagesen L K, Fife J L, Lauridsen E M, et al.The evolution of interfacial morphology during coarsening: A comparison between 4D experiments and phase-field simulations[J]. Scr. Mater., 2011, 64: 394 | [62] | Zhang Y T, Zhang W N, Wang T, et al.Phase field modeling of dendritic coarsening during isothermal solidification[J]. China Foundry, 2011, 8: 313 | [63] | Xie Y, Dong H B, Dantzig J.Growth of secondary dendrite arms of Fe-C alloy during transient directional solidification by phase-field method[J]. ISIJ Int., 2014, 54: 430 | [64] | Kundin J, Rezende J L L, Emmerich H. Phase-field modeling of the coarsening in multi-component systems[J]. Metall. Mater. Trans., 2014, 45A: 1068 | [65] | Neumann-Heyme H, Eckert K, Beckermann C.Evolution of specific interface area in dendritic alloy solidification[J]. IOP Conf. Ser. Mater. Sci. Eng., 2015, 84: 012072 | [66] | Zheng Q W, Jing T, Dong H B.Modelling of secondary dendrite arms evolution during solidification by a phase-field method[J]. Mater. Today Proc., 2015, 2(suppl.2): S466 | [67] | Park C L, Voorhees P W, Thornton K.Evolution of interfacial curvatures of a bicontinuous structure generated via nonconserved dynamics[J]. Acta Mater., 2015, 90: 182 | [68] | Wesner E, Choudhury A, August A, et al.A phase-field study of large-scale dendrite fragmentation in Al-Cu[J]. J. Cryst. Growth, 2012, 359: 107 | [69] | Zhang Q Y, Fang H, Xue H, et al.Interaction of local solidification and remelting during dendrite coarsening-modeling and comparison with experiments[J]. Sci. Rep., 2017, 7: 17809 | [70] | Belteran-Sanchez L, Stefanescu D M.A quantitative dendrite growth model and analysis of stability concepts[J]. Metall. Mater. Trans., 2004, 35A: 2471 | [71] | Dong H B, Lee P D.Simulation of the columnar-to-equiaxed transition in directionally solidified Al-Cu alloys[J]. Acta Mater., 2005, 53: 659 | [72] | Zhu M F, Stefanescu D M.Virtual front tracking model for the quantitative modeling of dendritic growth in solidification of alloys[J]. Acta Mater., 2007, 55: 1741 | [73] | Pan S Y, Zhu M F.A three-dimensional sharp interface model for the quantitative simulation of solutal dendritic growth[J]. Acta Mater., 2010, 58: 340 | [74] | Yuan L, Lee P D.Dendritic solidification under natural and forced convection in binary alloys: 2D versus 3D simulation[J]. Modell. Simul. Mater. Sci. Eng., 2010, 18: 055008 | [75] | Zhu M F, Zhang L, Zhao H L, et al.Modeling of microstructural evolution during divorced eutectic solidification of spheroidal graphite irons[J]. Acta Mater., 2015, 84: 413 | [76] | Chen R, Xu Q Y, Liu B C.Cellular automaton simulation of three-dimensional dendrite growth in Al-7Si-Mg ternary aluminum alloys[J]. Comput. Mater. Sci., 2015, 105: 90 | [77] | Zhang X F, Zhao J Z.Dendritic microstructure formation in a directionally solidified Al-11.6Cu-0.85Mg alloy[J]. J. Cryst. Growth, 2014, 391: 52 | [78] | Liu D R, Mangelinck-No?l N, Gandin C A, et al.Simulation of directional solidification of refined Al-7wt.%Si alloys-comparison with benchmark microgravity experiments[J]. Acta Mater., 2015, 93: 24 | [79] | Zhu M F, Tang Q Y, Zhang Q Y, et al.Cellular automaton modeling of micro-structure evolution during alloy solidification[J]. Acta Metall. Sin., 2016, 52: 1297(朱鸣芳, 汤倩玉, 张庆宇等. 合金凝固过程中显微组织演化的元胞自动机模拟[J]. 金属学报, 2016, 52: 1297) | [80] | Guo Y G, Li S M, Liu L, et al.CA simulation of microstructure of directionally solidified DZ125 superalloy[J]. Acta Metall. Sin., 2008, 44: 365(郭勇冠, 李双明, 刘林等. DZ125高温合金定向凝固微观组织的CA法模拟[J]. 金属学报, 2008, 44: 365) | [81] | Zhang L, Zhao H L, Zhu M F.Simulation of solidification microstructure of spheroidal graphite cast iron using a cellular automaton method[J]. Acta Metall. Sin., 2015, 51: 48(张蕾, 赵红蕾, 朱鸣芳. 球墨铸铁凝固显微组织的元胞自动机模拟[J]. 金属学报, 2015, 51: 148) | [82] | Shan B W, Huang W D, Lin X, et al.Dendrite primary spacing selection simulation by the cellular automaton model[J]. Acta Metall. Sin., 2008, 44: 1042(单博炜, 黄卫东, 林鑫等. 元胞自动机模型模拟枝晶一次间距的选择[J]. 金属学报, 2008, 44: 1042) | [83] | Chen R, Xu Q Y, Liu B C.Simulation of the dendrite morphology and microsegregation in solidification of Al-Cu-Mg aluminum alloys[J]. Acta Metall. Sin.(Engl. Lett.), 2015, 28: 173 | [84] | Zhang X F, Zhao J Z.Effect of forced flow on three dimensional dendritic growth of Al-Cu alloys[J]. Acta Metall. Sin., 2012, 48: 615(张显飞, 赵九洲. 来流对Al-Cu合金三维树枝晶生长的影响[J]. 金属学报, 2012, 48: 615) | [85] | Wu M W, Xiong S M.A three-dimensional cellular automaton model for simulation of dendritic growth of magnesium alloy[J]. Acta Metall. Sin.(Engl. Lett.), 2012, 25: 169 | [86] | Chen S J, Guillemot G, Gandin C A.Three-dimensional cellular automaton-finite element modeling of solidification grain structures for arc-welding processes[J]. Acta Mater., 2016, 115: 448 | [87] | Zinoviev A, Zinovieva O, Ploshikhin V, et al.Evolution of grain structure during laser additive manufacturing. Simulation by a cellular automata method[J]. Mater. Des., 2016, 106: 321 | [88] | Pan S Y, Zhang Q Y, Zhu M F, et al.Liquid droplet migration under static and dynamic conditions: Analytical model, phase-field simulation and experiment[J]. Acta Mater., 2015, 86: 229 | [89] | Trivedi R, Kurz W.Dendritic growth[J]. Int. Mater. Rev., 1994, 39: 49 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|