Please wait a minute...
金属学报  2018, Vol. 54 Issue (5): 789-800    DOI: 10.11900/0412.1961.2017.00564
  金属材料的凝固专刊 本期目录 | 过刊浏览 |
合金凝固枝晶粗化的研究进展
朱鸣芳1(), 邢丽科1, 方辉1, 张庆宇1, 汤倩玉1, 潘诗琰1,2
1 东南大学江苏省先进金属材料高技术研究重点实验室 南京 211189
2 南京理工大学材料科学与工程学院 南京 210094
Progresses in Dendrite Coarsening During Solidification of Alloys
Mingfang ZHU1(), Like XING1, Hui FANG1, Qingyu ZHANG1, Qianyu TANG1, Shiyan PAN1,2
1 Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing 211189, China
2 School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
全文: PDF(4447 KB)   HTML
摘要: 

枝晶是一种最常见的金属凝固显微组织。在大多数中低速的凝固过程中,枝晶组织发生粗化是一种不可避免的现象,对最终的凝固组织和产品性能产生重要影响。本文首先简要评述半个多世纪以来关于连续冷却和等温凝固过程中的枝晶粗化在理论研究、实验研究和数值模拟3方面的研究进展。随后,介绍作者课题组最近提出的一个包含凝固和熔化机制的元胞自动机(cellular automaton,CA)模型。采用该CA模型对SCN-ACE合金在固/液两相区等温过程中的枝晶粗化现象进行模拟研究,并对枝晶粗化过程中的凝固/熔化、界面几何形状和溶质扩散之间的复杂相互作用关系进行分析。

关键词 合金凝固显微组织枝晶粗化元胞自动机法    
Abstract

Dendrites are the most frequently observed solidification microstructures of metallic alloys. In most solidification processes at low and moderate cooling rates, dendrite coarsening in mushy zones has been recognized as an unavoidable phenomenon that significantly influences microstructures and thereby the properties of the final products. The behavior of dendrite coarsening has received persistent scientific interests owing to its importance in both academic value and practical application. During the last five decades, extensive efforts have been made through theoretical analyses, experimental techniques and numerical simulations for fundamentally understanding the mechanisms of dendrite coarsening during solidification under continuously cooling or isothermal conditions. This paper first gives a brief overview of the progress in the studies of dendrite coarsening. Then, a cellular automaton (CA) model recently proposed by the authors is presented, which involves the mechanisms of both solidification and melting. The model is applied to simulate the microstructural evolution of columnar dendrites of SCN-ACE alloys during isothermal holding in a mushy zone. The CA simulations reproduce the typical dendrite coarsening features as observed in experiments. The role of melting for dendrite coarsening is quantified by comparing the simulation results using the new CA model and a previous CA model that does not include the melting effect. The mechanisms of dendrite coarsening are investigated in detail by comparing the local equilibrium and actual liquid compositions at solid/liquid interfaces. The CA simulations render visualizing how local solidification and melting stimulate each other through the complicated interactions between phase transformation, interface shape variation and solute diffusion.

Key wordsalloy solidification    microstructure    dendrite coarsening    cellular automaton method
收稿日期: 2018-01-02     
ZTFLH:  TG113.12  
基金资助:资助项目 国家自然科学基金项目Nos.51371051和51501091,中央高校基本科研业务费专项资金项目No.2242016K40008,江苏省先进金属材料高技术研究重点实验室创新科研项目No.BM2007204及东南大学优秀博士论文培育基金项目No.YBJJ1627
作者简介:

作者简介 朱鸣芳,女,1957年生,教授,博士

引用本文:

朱鸣芳, 邢丽科, 方辉, 张庆宇, 汤倩玉, 潘诗琰. 合金凝固枝晶粗化的研究进展[J]. 金属学报, 2018, 54(5): 789-800.
Mingfang ZHU, Like XING, Hui FANG, Qingyu ZHANG, Qianyu TANG, Shiyan PAN. Progresses in Dendrite Coarsening During Solidification of Alloys. Acta Metall Sin, 2018, 54(5): 789-800.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2017.00564      或      https://www.ams.org.cn/CN/Y2018/V54/I5/789

图1  LSW理论的自相似粗化颗粒归一化尺寸分布[6,7]
图2  枝晶粗化的4种模式示意图
图3  同步辐射实时观察的Al-10%Cu (质量分数)合金在糊状区等温时的小枝晶臂熔化及枝晶间凹槽处凝固、枝晶臂尖端合并和透明合金等温实时观察的枝晶臂熔断[18,35,69]
图5  模拟的SCN-2.0%ACE (质量分数)合金在320 K糊状区等温时的枝晶粗化
图6  图5小框中枝晶臂形貌的模拟演化结果,显示小枝晶臂熔化、枝晶臂间凹槽处凝固和枝晶臂根部颈缩熔断等枝晶粗化模式
图7  模拟的SCN-2.0%ACE合金在316 K糊状区等温时枝晶臂尖端合并[69]
图8  耦合与未耦合熔化机制的CA模型模拟的SCN-2.0%ACE合金在316 K糊状区等温时,枝晶比表面积SVs随时间的变化[69]
[1] Marsh S P, Glicksman M E.Overview of geometric effects on coarsening of mushy zones[J]. Metall. Mater. Trans., 1996, 27A: 557
[2] Huang S C, Glicksman M E.Overview 12: Fundamentals of dendritic solidification-II development of sidebranch structure[J]. Acta Mater., 1981, 29: 717
[3] Rowenhorst D J, Voorhees P W.Measurement of interfacial evolution in three dimensions[J]. Annu. Rev. Mater. Res., 2012, 42: 105
[4] Flemings M C, Kattamis T Z, Bardes B P.Dendrite arm spacing in aluminum alloys[J]. Trans. Am. Foundry Soc., 1991, 89: 501
[5] Rettenmayr M.Melting and remelting phenomena[J]. Int. Mater. Rev., 2009, 54: 1
[6] Lifshitz I M, Slyozov V V.The kinetics of precipitation from supersaturated solid solutions[J]. J. Phys. Chem. Solids, 1961, 19: 35
[7] Wagner C.Theorie der alterung von niederschl?gen durch uml?sen (ostwald-reifung)[J]. Z. Elektrochem., 1961, 65: 581
[8] Ratke L, Voorhees P W.Growth and Coarsening: Ostwald Ripening in Material Processing[M]. Heidelberg: Springer-Verlag, 2002: 118
[9] Kirkwood D H.A simple model for dendrite arm coarsening during solidification[J]. Mater. Sci. Eng., 1985, 73: L1
[10] Mortensen A.On the influence of coarsening on microsegregation[J]. Metall. Trans., 1989, 20A: 247
[11] Mortensen A.On the rate of dendrite arm coarsening[J]. Metall. Trans., 1991, 22A: 569
[12] Chen M, Kattamis T Z.Dendrite coarsening during directional solidification of Al-Cu-Mn alloys[J]. Mater. Sci. Eng., 1998, A247: 239
[13] Kattamis T Z, Coughlin I C, Flemings M C.Influence of coarsening on dendrite arm spacing of aluminum-copper alloys[J]. Trans. Metall. Soc. AIME, 1967, 239: 1504
[14] Reeves J J, Kattamis T Z.A model for isothermal dendritic coarsening[J]. Scr. Metall., 1971, 5: 223
[15] Whisler N J, Kattamis T Z.Dendritic coarsening during solidification[J]. J. Cryst. Growth, 1972, 15: 20
[16] Peterson P W, Kattamis T Z, Giamei A F.Coarsening kinetics during solidification of Ni-Al-Ta dendritic monocrystals[J]. Metall. Trans., 1980, 11A: 1059
[17] Pilling J, Hellawell A.Mechanical deformation of dendrites by fluid flow[J]. Metall. Mater. Trans., 1996: 27A: 229
[18] Terzi S, Salvo L, Suery M, et al.Coarsening mechanisms in a dendritic Al-10% Cu alloy[J]. Acta Mater., 2010, 58: 20
[19] DeHoff R T. A geometrically general theory of diffusion controlled coarsening[J]. Acta Metall. Mater., 1991, 39: 2349
[20] Han Q Y, Hu H Q, Zhong X Y.The mathematical models for secondary dendrite arm isothermal coarsening[J]. Mater. Sci. Prog., 1987, 1(4): 33(韩青有, 胡汉起, 钟雪友. 二次枝晶臂等温粗化数学模型[J]. 材料科学进展, 1987, 1(4): 33)
[21] Kirkwood D H.Microsegregation[J]. Mater. Sci. Eng., 1984, 65: 101
[22] Dutta B, Rettenmayr M.Effect of cooling rate on the solidification behaviour of Al-Fe-Si alloys[J]. Mater. Sci. Eng., 2000, A283: 218
[23] Young K P, Kerkwood D H.The dendrite arm spacings of aluminum-copper alloys solidified under steady-state conditions[J]. Metall. Trans., 1975, 6A: 197
[24] Gu G D, An G Y.Secondary dendrite arm spacing and coarsening mechanism for Al-Cu-Ce alloys[J]. Foundry, 1990, (10): 32(顾根大, 安阁英. Al-Cu-Ce合金的二次枝晶间距和粗化机理[J]. 铸造, 1990, (10): 32)
[25] Poirier D R, Ganesan S, Andrews M, et al.Isothermal coarsening of dendritic equiaxial grains in Al-15.6wt.%Cu alloy[J]. Mater. Sci. Eng., 1991, A148: 289
[26] Alkemper J, Voorhees P W.Three-dimensional characterization of dendritic microstructures[J]. Acta Mater., 2001, 49: 897
[27] Mendoza R, Alkemper J, Voorhees P W.The morphological evolution of dendritic microstructures during coarsening[J]. Metall. Mater. Trans., 2003, 34A: 481
[28] Mendoza R, Savin I, Thornton K, et al.Topological complexity and the dynamics of coarsening[J]. Nat. Mater., 2004, 3: 385
[29] Kammer D, Voorhees P W.The morphological evolution of dendritic microstructures during coarsening[J]. Acta Mater., 2006, 54: 1549
[30] Mendoza R, Thornton K, Savin I, et al.The evolution of interfacial topology during coarsening[J]. Acta Mater., 2006, 54: 743
[31] Kwon Y, Thornton K, Voorhees P W.Coarsening of bicontinuous structures via nonconserved and conserved dynamics[J]. Phys. Rev., 2007, 75E: 021120
[32] Fife J L, Voorhees P W.Self-similar microstructural evolution of dendritic solid-liquid mixtures during coarsening[J]. Scr. Mater., 2009, 60: 839
[33] Fife J L, Voorhees P W.The morphological evolution of equiaxed dendritic microstructures during coarsening[J]. Acta Mater., 2009, 57: 2418
[34] Cool T, Voorhees P W.The evolution of dendrites during coarsening: Fragmentation and morphology[J]. Acta Mater., 2017, 127: 359
[35] Jackson K A, Hunt J D, Uhlmann D R, et al.On the origin of the equiaxed zone in castings[J]. Trans. Metall. Soc. AIME, 1966, 236: 149
[36] Li B, Brody H D, Kazimirov A.Real-time observation of dendrite coarsening in Sn-13%Bi alloy by synchrotron microradiography[J]. Phys. Rev., 2004, 70E: 062602
[37] Li B, Brody H D, Kazimirov A.Real time synchrotron microradiography of dendrite coarsening in Sn-13wt pct Bi alloy[J]. Metall. Mater. Trans., 2007, 38A: 599
[38] Limodin N, Salvo L, Suéry M, et al.In situ investigation by X-ray tomography of the overall and local microstructural changes occurring during partial remelting of an Al-15.8wt.% Cu alloy[J]. Acta Mater., 2007, 55: 3177
[39] Limodin N, Salvo L, Boller E, et al.In situ and real-time 3-D microtomography investigation of dendritic solidification in an Al-10 wt.% Cu alloy[J]. Acta Mater., 2009, 57: 2300
[40] Xu J J, Wang T M, Zhu J, et al.In situ study on secondary dendrite arm coarsening of Sn-Bi alloy by synchrotron microradiography[J]. Mater. Res. Innov., 2011, 15: 156
[41] Fife J L, Gibbs J W, Gulsoy E B, et al.The dynamics of interfaces during coarsening in solid-liquid systems[J]. Acta Mater., 2014, 70: 66
[42] Mirihanage W U, Falch K V, Snigireva I, et al.Retrieval of three-dimensional spatial information from fast in situ two-dimensional synchrotron radiography of solidification microstructure evolution[J]. Acta Mater., 2014, 81: 241
[43] Shuai S S, Guo E Y, Phillion A B, et al.Fast synchrotron X-ray tomographic quantification of dendrite evolution during the solidification of Mg-Sn alloys[J]. Acta Mater., 2016, 118: 260
[44] Guo E Y, Phillion A B, Cai B, et al.Dendritic evolution during coarsening of Mg-Zn alloys via 4D synchrotron tomography[J]. Acta Mater., 2016, 123: 373
[45] Mathiesen R H, Arnberg L, Bleuet P, et al.Crystal fragmentation and columnar-to-equiaxed transitions in Al-Cu studied by synchrotron X-ray video microscopy[J]. Metall. Mater. Trans., 2006, 37A: 2515
[46] Galenko P K, Phanikumar G, Funke O, et al. Dendritic solidification and fragmentation in undercooled Ni-Zr alloys [J]. Mater. Sci. Eng., 2007, A449-451: 649
[47] Ruvalcaba D, Mathiesen R H, Eskin D G, et al.In situ observations of dendritic fragmentation due to local solute-enrichment during directional solidification of an aluminum alloy[J]. Acta Mater., 2007, 55: 4287
[48] Wang T M, Xu J J, Li J, et al.In situ study on dendrite growth of metallic alloy by a synchrotron radiation imaging technology[J]. Sci. China: Tech. Sci., 2010, 53: 1278
[49] Peng P, Li X Z, Li J G, et al.Detachment of secondary dendrite arm in a directionally solidified Sn-Ni peritectic alloy under deceleration growth condition[J]. Sci. Rep., 2016, 6: 27682
[50] Akamatsu S, Nguyen-Thi H.In situ observation of solidification patterns in diffusive conditions[J]. Acta Mater., 2016, 108: 325
[51] Li X, Gagnoud A, Fautrelle Y, et al.Dendrite fragmentation and columnar-to-equiaxed transition during directional solidification at lower growth speed under a strong magnetic field[J]. Acta Mater., 2012, 60: 3321
[52] Liotti E, Lui A, Vincent R, et al.A synchrotron X-ray radiography study of dendrite fragmentation induced by a pulsed electromagnetic field in an Al-15Cu alloy[J]. Acta Mater., 2014, 70: 228
[53] Bi C, Guo Z P, Liotti E, et al.Quantification study on dendrite fragmentation in solidification process of alluminum alloys[J]. Acta Metall. Sin., 2015, 51: 677(毕成, 郭志鹏, Liotti E等. 铝合金凝固过程枝晶破碎现象的定量化研究[J]. 金属学报, 2015, 51: 677)
[54] Liotti E, Lui A, Kumar S, et al.The spatial and temporal distribution of dendrite fragmentation in solidifying Al-Cu alloys under different conditions[J]. Acta Mater., 2016, 121: 384
[55] Ogilvy A J W, Kirkwood D H. A model for the numerical computation of microsegregation in alloys[J]. Appl. Scient. Res., 1987, 44: 43
[56] Neumann-Heyme H, Eckert K, Beckermann C.Dendrite fragmentation in alloy solidification due to sidearm pinch-off[J]. Phys. Rev., 2015, 92E: 060401
[57] Warren J A, Boettinger W J.Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method[J]. Acta Metall. Mater., 1995, 43: 689
[58] Wang J C, Yang G C.Phase-field modeling of isothermal dendritic coarsening in ternary alloys[J]. Acta Mater., 2008, 56: 4585
[59] Chen Y, Kang X H, Li D Z.Phase-field modeling of free dendritic growth with adaptive finite element method[J]. Acta Phys. Sin., 2009, 58: 390(陈云, 康秀红, 李殿中. 自由枝晶生长相场模型的自适应有限元法模拟[J]. 物理学报, 2009, 58: 390)
[60] Hu C Q, Zhang Y T, Li D H, et al.Simulation of dendrite growth and coarsening during isothermal solidification process by phase field method[J]. J. Shenyang Ligong Univ., 2010, 29(4): 51(胡春青, 张玉妥, 李东辉等. 等温凝固过程中枝晶生长与枝晶熟化的相场法模拟[J]. 沈阳理工大学学报, 2010, 29(4): 51)
[61] Aagesen L K, Fife J L, Lauridsen E M, et al.The evolution of interfacial morphology during coarsening: A comparison between 4D experiments and phase-field simulations[J]. Scr. Mater., 2011, 64: 394
[62] Zhang Y T, Zhang W N, Wang T, et al.Phase field modeling of dendritic coarsening during isothermal solidification[J]. China Foundry, 2011, 8: 313
[63] Xie Y, Dong H B, Dantzig J.Growth of secondary dendrite arms of Fe-C alloy during transient directional solidification by phase-field method[J]. ISIJ Int., 2014, 54: 430
[64] Kundin J, Rezende J L L, Emmerich H. Phase-field modeling of the coarsening in multi-component systems[J]. Metall. Mater. Trans., 2014, 45A: 1068
[65] Neumann-Heyme H, Eckert K, Beckermann C.Evolution of specific interface area in dendritic alloy solidification[J]. IOP Conf. Ser. Mater. Sci. Eng., 2015, 84: 012072
[66] Zheng Q W, Jing T, Dong H B.Modelling of secondary dendrite arms evolution during solidification by a phase-field method[J]. Mater. Today Proc., 2015, 2(suppl.2): S466
[67] Park C L, Voorhees P W, Thornton K.Evolution of interfacial curvatures of a bicontinuous structure generated via nonconserved dynamics[J]. Acta Mater., 2015, 90: 182
[68] Wesner E, Choudhury A, August A, et al.A phase-field study of large-scale dendrite fragmentation in Al-Cu[J]. J. Cryst. Growth, 2012, 359: 107
[69] Zhang Q Y, Fang H, Xue H, et al.Interaction of local solidification and remelting during dendrite coarsening-modeling and comparison with experiments[J]. Sci. Rep., 2017, 7: 17809
[70] Belteran-Sanchez L, Stefanescu D M.A quantitative dendrite growth model and analysis of stability concepts[J]. Metall. Mater. Trans., 2004, 35A: 2471
[71] Dong H B, Lee P D.Simulation of the columnar-to-equiaxed transition in directionally solidified Al-Cu alloys[J]. Acta Mater., 2005, 53: 659
[72] Zhu M F, Stefanescu D M.Virtual front tracking model for the quantitative modeling of dendritic growth in solidification of alloys[J]. Acta Mater., 2007, 55: 1741
[73] Pan S Y, Zhu M F.A three-dimensional sharp interface model for the quantitative simulation of solutal dendritic growth[J]. Acta Mater., 2010, 58: 340
[74] Yuan L, Lee P D.Dendritic solidification under natural and forced convection in binary alloys: 2D versus 3D simulation[J]. Modell. Simul. Mater. Sci. Eng., 2010, 18: 055008
[75] Zhu M F, Zhang L, Zhao H L, et al.Modeling of microstructural evolution during divorced eutectic solidification of spheroidal graphite irons[J]. Acta Mater., 2015, 84: 413
[76] Chen R, Xu Q Y, Liu B C.Cellular automaton simulation of three-dimensional dendrite growth in Al-7Si-Mg ternary aluminum alloys[J]. Comput. Mater. Sci., 2015, 105: 90
[77] Zhang X F, Zhao J Z.Dendritic microstructure formation in a directionally solidified Al-11.6Cu-0.85Mg alloy[J]. J. Cryst. Growth, 2014, 391: 52
[78] Liu D R, Mangelinck-No?l N, Gandin C A, et al.Simulation of directional solidification of refined Al-7wt.%Si alloys-comparison with benchmark microgravity experiments[J]. Acta Mater., 2015, 93: 24
[79] Zhu M F, Tang Q Y, Zhang Q Y, et al.Cellular automaton modeling of micro-structure evolution during alloy solidification[J]. Acta Metall. Sin., 2016, 52: 1297(朱鸣芳, 汤倩玉, 张庆宇等. 合金凝固过程中显微组织演化的元胞自动机模拟[J]. 金属学报, 2016, 52: 1297)
[80] Guo Y G, Li S M, Liu L, et al.CA simulation of microstructure of directionally solidified DZ125 superalloy[J]. Acta Metall. Sin., 2008, 44: 365(郭勇冠, 李双明, 刘林等. DZ125高温合金定向凝固微观组织的CA法模拟[J]. 金属学报, 2008, 44: 365)
[81] Zhang L, Zhao H L, Zhu M F.Simulation of solidification microstructure of spheroidal graphite cast iron using a cellular automaton method[J]. Acta Metall. Sin., 2015, 51: 48(张蕾, 赵红蕾, 朱鸣芳. 球墨铸铁凝固显微组织的元胞自动机模拟[J]. 金属学报, 2015, 51: 148)
[82] Shan B W, Huang W D, Lin X, et al.Dendrite primary spacing selection simulation by the cellular automaton model[J]. Acta Metall. Sin., 2008, 44: 1042(单博炜, 黄卫东, 林鑫等. 元胞自动机模型模拟枝晶一次间距的选择[J]. 金属学报, 2008, 44: 1042)
[83] Chen R, Xu Q Y, Liu B C.Simulation of the dendrite morphology and microsegregation in solidification of Al-Cu-Mg aluminum alloys[J]. Acta Metall. Sin.(Engl. Lett.), 2015, 28: 173
[84] Zhang X F, Zhao J Z.Effect of forced flow on three dimensional dendritic growth of Al-Cu alloys[J]. Acta Metall. Sin., 2012, 48: 615(张显飞, 赵九洲. 来流对Al-Cu合金三维树枝晶生长的影响[J]. 金属学报, 2012, 48: 615)
[85] Wu M W, Xiong S M.A three-dimensional cellular automaton model for simulation of dendritic growth of magnesium alloy[J]. Acta Metall. Sin.(Engl. Lett.), 2012, 25: 169
[86] Chen S J, Guillemot G, Gandin C A.Three-dimensional cellular automaton-finite element modeling of solidification grain structures for arc-welding processes[J]. Acta Mater., 2016, 115: 448
[87] Zinoviev A, Zinovieva O, Ploshikhin V, et al.Evolution of grain structure during laser additive manufacturing. Simulation by a cellular automata method[J]. Mater. Des., 2016, 106: 321
[88] Pan S Y, Zhang Q Y, Zhu M F, et al.Liquid droplet migration under static and dynamic conditions: Analytical model, phase-field simulation and experiment[J]. Acta Mater., 2015, 86: 229
[89] Trivedi R, Kurz W.Dendritic growth[J]. Int. Mater. Rev., 1994, 39: 49
[1] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[2] 李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
[3] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[4] 钱月,孙蓉蓉,张文怀,姚美意,张金龙,周邦新,仇云龙,杨健,成国光,董建新. NbFe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响[J]. 金属学报, 2020, 56(3): 321-332.
[5] 肖宏,许朋朋,祁梓宸,吴宗河,赵云鹏. 感应加热异温轧制制备钢/铝复合板[J]. 金属学报, 2020, 56(2): 231-239.
[6] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[7] 黄森森,马英杰,张仕林,齐敏,雷家峰,宗亚平,杨锐. α+β两相钛合金元素再分配行为及其对显微组织和力学性能的影响[J]. 金属学报, 2019, 55(6): 741-750.
[8] 刘巧沐,黄顺洲,刘芳,杨艳,南宏强,张东,孙文儒. B含量对K417G合金凝固过程中组织演变和力学性能的影响[J]. 金属学报, 2019, 55(6): 720-728.
[9] 蓝春波,梁家能,劳远侠,谭登峰,黄春艳,莫羡忠,庞锦英. 冷轧态Ti-35Nb-2Zr-0.3O合金的异常热膨胀行为[J]. 金属学报, 2019, 55(6): 701-708.
[10] 刘征,刘建荣,赵子博,王磊,王清江,杨锐. 电子束快速成形制备TC4合金的组织和拉伸性能分析[J]. 金属学报, 2019, 55(6): 692-700.
[11] 安同邦,魏金山,单际国,田志凌. 保护气成分对1000 MPa级高强熔敷金属组织特征的影响[J]. 金属学报, 2019, 55(5): 575-584.
[12] 任德春, 苏虎虎, 张慧博, 王健, 金伟, 杨锐. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响[J]. 金属学报, 2019, 55(4): 480-488.
[13] 覃嘉宇, 李小强, 金培鹏, 王金辉, 朱云鹏. 碳纳米管(CNTs)增强AZ91镁基复合材料组织与力学性能研究[J]. 金属学报, 2019, 55(12): 1537-1543.
[14] 田甜, 郝志博, 贾崇林, 葛昌纯. 新型第三代粉末高温合金FGH100L的显微组织与力学性能[J]. 金属学报, 2019, 55(10): 1260-1272.
[15] 何波, 邢盟, 杨光, 邢飞, 刘祥宇. 成分梯度对激光沉积制造TC4/TC11连接界面组织和性能的影响[J]. 金属学报, 2019, 55(10): 1251-1259.