|
|
纵向静磁场对定向凝固GCr15轴承钢柱状晶向等轴晶转变的影响 |
侯渊, 任忠鸣( ), 王江, 张振强, 李霞 |
上海大学省部共建高品质特殊钢冶金与制备国家重点实验室 上海 200072 |
|
Effect of Longitudinal Static Magnetic Field on the Columnar to Equiaxed Transition in Directionally Solidified GCr15 Bearing Steel |
Yuan HOU, Zhongming REN( ), Jiang WANG, Zhenqiang ZHANG, Xia LI |
State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072, China |
引用本文:
侯渊, 任忠鸣, 王江, 张振强, 李霞. 纵向静磁场对定向凝固GCr15轴承钢柱状晶向等轴晶转变的影响[J]. 金属学报, 2018, 54(5): 801-808.
Yuan HOU,
Zhongming REN,
Jiang WANG,
Zhenqiang ZHANG,
Xia LI.
Effect of Longitudinal Static Magnetic Field on the Columnar to Equiaxed Transition in Directionally Solidified GCr15 Bearing Steel[J]. Acta Metall Sin, 2018, 54(5): 801-808.
[1] | Bhadeshia H K D H. Steels for bearings[J]. Prog. Mater. Sci., 2012, 57: 268 | [2] | Dong Z Q, Jiang B, Mei Z, et al.Effect of carbide distribution on the grain refinement in the steel for large-size bearing ring[J]. Steel Res. Int., 2016, 87: 745 | [3] | Qiu H, Wang L N, Hanamura T, et al.Physical interpretation of grain refinement-induced variation in fracture mode in ferritic steel[J]. ISIJ Int., 2013, 53: 382 | [4] | Walker P F F, Kerrigan A, Green M, et al. Modelling of micro-segregation in a 1C-1.5Cr type bearing steel[J]. Bear. Steel Technol., 2015, 10: 54 | [5] | Grong O, Kolbeinsen L, Van Der Eijk C, et al. Microstructure control of steels through dispersoid metallurgy using novel grain refining alloys[J]. ISIJ Int., 2014, 46: 824 | [6] | Kivi? M, Holappa L, Iung T.Addition of dispersoid titanium oxide inclusions in steel and their influence on grain refinement[J]. Metall. Mater. Trans., 2010, 41B: 1194 | [7] | Sasaki M, Ohsasa K, Kudoh M, et al.Refinement of austenite grain in carbon steel by addition of titanium and boron[J]. ISIJ Int., 2008, 48: 340 | [8] | Watanabe T, Shiroki M, Yanagisawa A, et al.Improvement of mechanical properties of ferritic stainless steel weld metal by ultrasonic vibration[J]. J. Mater. Process. Technol., 2010, 210: 1646 | [9] | Lu J Z, Luo K Y, Zhang Y K, et al.Grain refinement mechanism of multiple laser shock processing impacts on ANSI 304 stainless steel[J]. Acta Mater., 2010, 58: 5354 | [10] | Abbasi-Khazaei B, Ghaderi S.A novel process in semi-solid metal casting[J]. J. Mater. Sci. Technol., 2012, 28: 946 | [11] | Li Q S, Song C J, Li H B, et al.Effect of pulsed magnetic field on microstructure of 1Cr18Ni9Ti austenitic stainless steel[J]. Mater. Sci. Eng., 2007, A466: 101 | [12] | Spitzer K H, Dubke M, Schwerdtfeger K.Rotational electromagnetic stirring in continuous casting of round strands[J]. Metall. Mater. Trans., 1986, 17B: 119 | [13] | Galindo V, Grants I, Lantzsch R, et al.Numerical and experimental modeling of the melt flow in a traveling magnetic field for vertical gradient freeze crystal growth[J]. J. Cryst. Growth, 2007, 303: 258 | [14] | Hernández F C R, Sokolowski J H. Comparison among chemical and electromagnetic stirring and vibration melt treatments for Al-Si hypereutectic alloys[J]. J. Alloys Compd., 2006, 426: 205 | [15] | Nafisi S, Emadi D, Shehata M T, et al.Effects of electromagnetic stirring and superheat on the microstructural characteristics of Al-Si-Fe alloy[J]. Mater. Sci. Eng., 2006, A432: 71 | [16] | Lu D H, Jiang Y H, Guan G S, et al.Refinement of primary Si in hypereutectic Al-Si alloy by electromagnetic stirring[J]. J. Mater. Process. Technol., 2007, 189: 13 | [17] | Chen Z, Wen X L, Chen C L.Fluid flow and microstructure formation in a rotating magnetic field during the directional solidification process[J]. J. Alloys Compd., 2010, 491: 395 | [18] | Campanella T, Charbon C, Rappaz M.Grain refinement induced by electromagnetic stirring: A dendrite fragmentation criterion[J]. Metall. Mater. Trans., 2004, 35A: 3201 | [19] | Harada H, Toh T, Ishii T, et al.Effect of magnetic field conditions on the electromagnetic braking efficiency[J]. ISIJ Int., 2001, 41: 1236 | [20] | Shercliff J A.Thermoelectric magnetohydrodynamics in closed containers[J]. Phys. Fluid., 1979, 22: 635 | [21] | Li X, Gagnoud A, Ren Z M, et al.Investigation of thermoelectric magnetic convection and its effect on solidification structure during directional solidification under a low axial magnetic field[J]. Acta Mater., 2009, 57: 2180 | [22] | Lehmann P, Moreau R, Camel D, et al.Modification of interdendritic convection in directional solidification by a uniform magnetic field[J]. Acta Mater., 1998, 46: 4067 | [23] | Dold P, Szofran F R, Benz K W.Thermoelectromagnetic convection in vertical Bridgman grown germanium-silicon[J]. J. Cryst. Growth, 2006, 291: 1 | [24] | Li X, Gagnoud A, Fautrelle Y, et al.Dendrite fragmentation and columnar-to-equiaxed transition during directional solidification at lower growth speed under a strong magnetic field[J]. Acta Mater., 2012, 60: 3321 | [25] | Li X, Ren Z M, Shen Y, et al.Effect of thermoelectric magnetic force on the array of dendrites during directional solidification of Al-Cu alloys in a high magnetic field[J]. Philos. Mag. Lett., 2012, 92: 675 | [26] | Li X, Fautrelle Y, Zaidat K, et al.Columnar-to-equiaxed transitions in Al-based alloys during directional solidification under a high magnetic field[J]. J. Cryst. Growth, 2010, 312: 267 | [27] | Yu J B, Du D F, Ren Z M, et al.Influence of an axial magnetic field on microstructures and alignment in directionally solidified Ni-based superalloy[J]. ISIJ Int., 2017, 57: 337 | [28] | Kato T, Jones H, Kirkwood D H.Segregation and eutectic formation in solidification of Fe-1C-1.5Cr steel[J]. Mater. Sci. Technol., 2003, 19: 1070 | [29] | Baltaretu F, Wang J, Letout S, et al.Thermoelectric effects on electrically conducting particles in liquid metal[J]. Magnetohydrodynamics, 2015, 51: 45 | [30] | Wang J, Fautrelle Y, Nguyen-Thi H, et al.Thermoelectric magnetohydrodynamic flows and their induced change of solid-liquid interface shape in static magnetic field-assisted directional solidification[J]. Metall. Mater. Trans., 2017, 47A: 1 | [31] | Kurz W, Fisher D J.Fundamentals of Solidification[M]. 3rd Ed., Switzerland: Trans Tech Publications. Ltd., 1992: 80 | [32] | Wang W L, Luo S, Zhu M Y.Dendritic growth of high carbon iron-based alloy under constrained melt flow[J]. Comput. Mater. Sci., 2014, 95: 136 | [33] | Taniguchi S, Brimacombe J K.Application of pinch force to the separation of inclusion particles from liquid steel[J]. ISIJ Int., 1994, 34: 722 | [34] | Enderby J E, Dupree B C.The thermoelectric power of liquid Fe, Co and Ni[J]. Philos. Mag., 1977, 35: 791 | [35] | Hellawell A, Liu S, Lu S Z.Dendrite fragmentation and the effects of fluid flow in castings[J]. JOM, 1997, 49(3): 18 | [36] | Zimmermann G, Pickmann C, Hamacher M, et al.Fragmentation-driven grain refinement in directional solidification of AlCu10wt-% alloy at low pulling speeds[J]. Acta Mater., 2017, 126: 236 | [37] | Flemings M C.Behavior of metal alloys in the semisolid state[J]. Metall. Trans., 1991, 22B: 269 | [38] | Hunt J D.Steady state columnar and equiaxed growth of dendrites and eutectic[J]. Mater. Sci. Eng., 1984, 65: 75 | [39] | Cai B, Wang J, Kao A, et al.4D synchrotron X-ray tomographic quantification of the transition from cellular to dendrite growth during directional solidification[J]. Acta Mater., 2016, 117: 160 | [40] | Ruvalcaba D, Mathiesen R H, Eskin D G, et al.In situ observations of dendritic fragmentation due to local solute-enrichment during directional solidification of an aluminum alloy[J]. Acta Mater., 2007, 55: 4287 | [41] | Ananiev S, Nikrityuk P, Eckert K.Dendrite fragmentation by catastrophic elastic remelting[J]. Acta Mater., 2009, 57: 657 | [42] | Luo S, Zhu M Y, Louhenkilpi S.Numerical simulation of solidification structure of high carbon steel in continuous casting using cellular automaton method[J]. ISIJ Int., 2012, 52: 823 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|